Skip to main content
Log in

Isothermal crystallization kinetics and melting behavior of in situ compatibilized polyamide 6/Polyethylene-octene blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We developed in situ compatibilization technology to improve the compatibility between polyamide 6 (PA 6) and polyethylene-octene (POE). In the present work, we investigated the isothermal crystallization and melting behavior of PA 6/POE blends using differential scanning calorimetry (DSC). All specimens exhibited double melting peaks at lower temperature and single melting peaks at higher temperature. The Avrami exponent and equilibrium melting temperature were obtained by analysis of DSC experimental data using the Avrami equation and Hoffman-Weeks theory, respectively. It has demonstrated that the crystallization model of PA 6 for all specimens might be a mixture with two-dimensional, circular, three-dimensional growth with thermal nucleation. We further calculated the nucleation parameter (K g ) from the obtained crystallization kinetics data using Lauritzen-Hoffmann equation. It was found that the K g values of the compatibilized PA 6 were lower than that of pure PA 6 whereas increased with the increase of POE content, which was related to the better dispersion of POE and the interaction between PA 6 and the in situ formed POE-g-MAH. Additionally, the spherulite morphology was observed by polarized optical microscopy (POM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang JJ, Keskkula H, Paul DR (2006) Polymer 47:624

    Article  CAS  Google Scholar 

  2. Okada O, Keskkula H, Paul DR (2001) Polymer 42:8715

    Article  CAS  Google Scholar 

  3. Okada O, Keskkula H, Paul DR (1996) J Appl Polym Sci 61:623

    Article  Google Scholar 

  4. Chow WS, Abu BA, Ishak Z, Karger-Kocsis J, Ishiaku US (2005) Euro Polym J 41:687

    Article  CAS  Google Scholar 

  5. Lopez-Quintana S, Rosales C, Gobernado-Mitre I, Merino JC, Pastor JMJ (2008) Appl Polym Sci 107:3099

    Article  CAS  Google Scholar 

  6. Kumar S, Ramanaiah BV, Maiti SN (2006) Soft Mater 4:85

    Article  Google Scholar 

  7. Wang C, Su JX, Li J, Yang H, Zhang Q, Du RN, Fu Q (2006) Polymer 47:3197

    Article  CAS  Google Scholar 

  8. Tjong SC, Bao SPJ (2005) Polym Sci Polym Phys 43:585

    Article  CAS  Google Scholar 

  9. Huang JJ, Keskkula H, Paul DR (2004) Polymer 45:4203

    Article  CAS  Google Scholar 

  10. Wu CJ, Kuo JF, Chen CY, Woo EJ (1994) Appl Polym Sci 52:1695

    Article  CAS  Google Scholar 

  11. Xie XL, Yu ZZ, Zhang QX, Zhen GW, Mai YWJ (2007) Polym Sci Polym Phys 45:1448

    Article  CAS  Google Scholar 

  12. Lai SM, Li HC, Liao YC (2007) Euro Polym J 43:1606

    Google Scholar 

  13. Dasari A, Yu ZZ, Mai YW (2007) Macromolecules 40:123

    Article  CAS  Google Scholar 

  14. G'Sell C, Bai SL, Hiver JM (2004) Polymer 45:5785

    Article  Google Scholar 

  15. Wang XD, Feng W, Li HQ, Jin RGJ (2003) Appl Polym Sci 88:3110

    Article  CAS  Google Scholar 

  16. Lai SM, Liao YC, Chen TWJ (2006) Appl Polym Sci 100:1364

    Article  CAS  Google Scholar 

  17. Yu ZZ, Ou YC, Hu GHJ (1998) Appl. Polym Sci 69:1711

    CAS  Google Scholar 

  18. Lambla M, Seadan M (1992) Polym. Eng Sci 32:1687

    Article  CAS  Google Scholar 

  19. Coltelli MB, Passaglia E, Ciardelli F (2006) Polymer 47:85

    Article  CAS  Google Scholar 

  20. Asadinezhad A, Jafari SH, Khonakdar HA, Bӧhme F, Hässler R, Häussler LJ (2007) Appl Polym Sci 106:1964

    Article  CAS  Google Scholar 

  21. Cebe P, Hong SD (1986) Polymer 27:1183

    Article  CAS  Google Scholar 

  22. Avrami MJ (1939) Chem Phys 7:1103

    CAS  Google Scholar 

  23. Avrami MJ (1940) Chem Phys 8:212

    CAS  Google Scholar 

  24. Shultz J (1974) Polymeric material science. Prentice-Hall, New York

    Google Scholar 

  25. Wunderlich B (1977) Macromolecular physics, vol 2. Academic, New York

    Google Scholar 

  26. Hoffman JD, Davis GT, Lauritzen JI (1976) In: Hannary NB (ed) Treatise on solid state chemistry: crystalline and non-crystalline solids. Plenum, New York, pp 497–614

    Google Scholar 

  27. Lin CC (1983) Polym Eng Sci 23:113

    Article  CAS  Google Scholar 

  28. Hoffman JD, Weeks JJJ (1962) Res Natl Bur Stand 66A:13

    CAS  Google Scholar 

  29. Liu SY, Yu YN, Cui Y, Zhang HF, Mo ZSJ (1998) Appl Polym Sci 70:2371

    Article  CAS  Google Scholar 

  30. Weng WH, Chen GH, Wu DJ (2003) Polymer 44:8119

    Article  CAS  Google Scholar 

  31. Hoffman DJ, Davis GT, Lauritzen JI (1976) In: Hammay NB (ed) Treatise on Solid State Chemistry. Plenum, New York, p 497

    Google Scholar 

  32. He M, Cheng W, Dong X (1993) Polymer Physics. Fudan University Press, Shanghai, p 252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Wang, W., Wang, H. et al. Isothermal crystallization kinetics and melting behavior of in situ compatibilized polyamide 6/Polyethylene-octene blends. J Polym Res 17, 429–437 (2010). https://doi.org/10.1007/s10965-009-9329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9329-0

Keywords

Navigation