Skip to main content
Log in

Kinetics and latex particles analysis on styrene emulsion polymerization induced by 60Co γ rays in presence of anionic polymerizable emulsifier

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

60Co γ rays induced styrene emulsion polymerizations were carried out with sodium undec-10-enoate (UDNa) as emulsifier at room temperature and the different kinetics was discussed. The influence of absorbed dose rate, monomer concentration and emulsifier concentration on kinetics and latex particles was studied. The polymerization kinetics relation was found as R P D0.37·M0.75·E0.70 (R P , maximum polymerization rate; D, absorbed dose rate; M, monomer concentration; E, emulsifier concentration). The particles’ diameter increases and particle size distribution (PSD) becomes narrower with the decrease of absorbed dose rate and increase of monomer content. The effect of UDNa content on particles’ diameter and particle size distribution is the same as that of emulsifier in conventional emulsion system. This type of emulsion polymerization can easily form monodisperse particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Greene BW, Sheetz DP (1970) J Colloid Interface Sci 32:96. doi:10.1016/0021-9797(70)90106-2

    Article  CAS  Google Scholar 

  2. DiGioia FA, Nelson RE (1953) Ind Eng Chem Res 45:745. doi:10.1021/ie50520a028

    Article  CAS  Google Scholar 

  3. Holmberg K (1992) Prog. Org. Coat. 20:325. doi:10.1016/0033-0655(92)80022-O

    Article  CAS  Google Scholar 

  4. Mobarakeh HS, Roudboneh MH (2006) J Polym Res 13:421. doi:10.1007/s10965-006-9062-x

    Article  CAS  Google Scholar 

  5. Guyot A (1996) Curr Opin Colloid Interface Sci 1:580

    Article  CAS  Google Scholar 

  6. Urquiola MB, Dimonie VL, Sudol ED, El-Aasser MS (1992) J. Polym. Sci. Polym. Chem. Ed. 30:2619. doi:10.1002/pola.1992.080301216

    Article  CAS  Google Scholar 

  7. Dai Q, Wu DZ, Zhang ZC, Ye Q (2003) Polymer (Guildf) 44:73. doi:10.1016/S0032-3861(02)00728-0

    Article  CAS  Google Scholar 

  8. El-Mohdy HLA, Ghanem S (2009) J Polym Res 16:1. doi:10.1007/s10965-008-9196-0

    Article  CAS  Google Scholar 

  9. El-Mohdy HLA, El-Rehim HAA (2009) J Polym Res 16:63. doi:10.1007/s10965-008-9203-5

    Article  CAS  Google Scholar 

  10. Chen SA, Chang HS (1985) J. Polym. Sci. Polym. Chem. 23:2615

    CAS  Google Scholar 

  11. Wang X, Sudol ED, El-Aasser MS (2001) J. Polym. Sci. Polym. Chem. Ed. 39:3093. doi:10.1002/pola.1290

    Article  CAS  Google Scholar 

  12. Wang X, Sudol ED, El-Aasser MS (2001) Langmuir 17:6865. doi:10.1021/la010641n

    Article  CAS  Google Scholar 

  13. Guyot A, Âbele S, Sjöberg M, Hamaide T, Zicmanis A (1997) Langmuir 13:176. doi:10.1021/la960577n

    Article  Google Scholar 

  14. Guyot A, Âbele S, Zicmanis A, Graillat C, Monnet C (1999) Langmuir 15:1033. doi:10.1021/la980562k

    Article  Google Scholar 

  15. Guyot A, Soula O (1999) Langmuir 15:7956. doi:10.1021/la9817009

    Article  CAS  Google Scholar 

  16. Larrabee CE, Sprague ED (1979) J. Polym. Sci. Polym. Let. Ed. 17:749. doi:10.1002/pol.1979.130171201

    Article  CAS  Google Scholar 

  17. Ye Q, Ge XW, Zhang ZC (2003) Radiat Phys Chem 66:11. doi:10.1016/S0969-806X(02)00307-9

    Article  CAS  Google Scholar 

  18. Xu XL, Ge XW, Zhang ZC, Zhang MW (1998) Polymer (Guildf) 39:5321. doi:10.1016/S0032-3861(97)10205-1

    Article  CAS  Google Scholar 

  19. Zaragoza-Contreras EA, Navarro-Rodríguez D (2003) Polymer (Guildf) 44:5541. doi:10.1016/S0032-3861(03)00621-9

    Article  CAS  Google Scholar 

  20. Larrabee CE Jr, Estel D (1979) J. Polym. Sci. Polym. Lett. 17:749

    Article  CAS  Google Scholar 

  21. Ye Q, Ge XW, Zhang ZC (2003) Radiat Phys Chem 66:11. doi:10.1016/S0969-806X(02)00307-9

    Article  CAS  Google Scholar 

  22. Xu XL, Fei B, Zhang ZC, Zhang MW (1996) J. Polym. Sci. Polym. Chem. 34:1657. doi:10.1002/(SICI)1099-0518(19960715) 34:9<1657::AID-POLA2>3.0.CO;2-P

    Article  CAS  Google Scholar 

  23. Ober CK, Hair ML (1987) J. Polym. Sci. Pol. Chem. Ed. 25:1395. doi:10.1002/pola.1987.080250516

    Article  CAS  Google Scholar 

  24. Xu ZS, Yi CF, Cheng SY, Zhang JZ (1997) J Appl Polym Sci 66:1. doi:10.1002/(SICI)1097-4628(19971003)66:1<1::AID-APP1>3.0.CO;2-X

    Article  CAS  Google Scholar 

  25. Xu ZS, Lu GH, Cheng SY, Li JZ (1995) J Appl Polym Sci 56:575. doi:10.1002/app.1995.070560506

    Article  CAS  Google Scholar 

  26. Lamer VK, Dinegar RH (1975) J Am Chem Soc 72:4847. doi:10.1021/ja01167a001

    Article  Google Scholar 

  27. Naka Y, Kaetsu I, Yamamoto Y, Hayashi K (1991) J. Polym. Sci. Polym. Chem. 29:1197. doi:10.1002/pola.1991.080290814

    Article  CAS  Google Scholar 

  28. Liu J, Chew CH, Gan LM, Teo WK, Gan LH (1997) Langmuir 13:4988. doi:10.1021/la970252m

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (IMXK57080027) and the Research Foundation Harbin Institute of Technology at Weihai (IMJQ10070013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Huang, L. Kinetics and latex particles analysis on styrene emulsion polymerization induced by 60Co γ rays in presence of anionic polymerizable emulsifier. J Polym Res 17, 241–246 (2010). https://doi.org/10.1007/s10965-009-9310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9310-y

Keywords

Navigation