Advertisement

Journal of Polymer Research

, Volume 17, Issue 2, pp 213–219 | Cite as

Maleated natural rubber prepared through mechanochemistry and its coupling effects on natural rubber/cotton fiber composites

  • Zheng Zeng
  • Wentan RenEmail author
  • Chi Xu
  • Weiqiang Lu
  • Yong Zhang
  • Yinxi Zhang
Original Paper

Abstract

Maleated natural rubber (MNR) was prepared by blending natural rubber (NR) and maleic anhydride (MA) in an internal mixer at 150 °C through mechanochemistry. The graft reaction of MA onto NR and the hydrogen bonding formed between fiber and MA were confirmed by Fourier transformation infrared spectrometer (FTIR). The quantity of grafted MA increased with increasing MA content. The composites showed better mechanical properties with MNR that contains higher MA content. The MNR with 20 phr MA was used as a coupling agent. Kraus equation showed the incorporation of MNR favored the reinforcement of fiber. The composites with MNR showed higher modulus and tensile strength than those without MNR. The coarse surfaces of the pullout fibers and the high storage modulus of composites with MNR implied the enhancement of interfacial adhesion.

Keywords

Rubber Fiber Maleic anhydride Mechanochemistry Interfacial adhesion 

References

  1. 1.
    Datta S, De SK, Kontos EG, Wefer JM, Wagner P, Vidal A (1996) Polymer (Guildf) 37:3431. doi: 10.1016/0032-3861(96)88492-8 CrossRefGoogle Scholar
  2. 2.
    Schwartz GA, Cerveny S, Marzocca ÁJ, Gerspacher M, Nikiel L (2003) Polymer (Guildf) 44:7229. doi: 10.1016/j.polymer.2003.09.007 CrossRefGoogle Scholar
  3. 3.
    Eun-Kyoung L, Sei-Young C (2007) J Polym Res 24:1975Google Scholar
  4. 4.
    Sandip DD, Anurag LE, Vijay KS (2004) J Polym Res 10:141Google Scholar
  5. 5.
    Shen SG, Yang M, Ran SL, Xu F, Wang ZX (2006) J Polym Res 13:469. doi: 10.1007/s10965-006-9068-4 CrossRefGoogle Scholar
  6. 6.
    Cai HH, Li SD, Tian GR, Wang HB, Wang JH (2003) J Appl Polym Sci 87:982. doi: 10.1002/app.11410 CrossRefGoogle Scholar
  7. 7.
    Arroyo M, López-Manchado MA, Herrero B (2003) Polymer (Guildf) 44:2447. doi: 10.1016/S0032-3861(03)00090-9 CrossRefGoogle Scholar
  8. 8.
    Magaraphan R, Thaijaroen W, Lim-Ochakun R (2003) Rubber Chem Technol 76:406Google Scholar
  9. 9.
    Bledzki AK, Gassan J (1999) Prog Polym Sci Oxf 24:221. doi: 10.1016/S0079-6700(98)00018-5 CrossRefGoogle Scholar
  10. 10.
    Zhao HP, He PC, Ping PJ, Qing YF (2006) J Polym Res 13:323. doi: 10.1007/s10965-006-9041-2 CrossRefGoogle Scholar
  11. 11.
    Heinze T, Liebert T (2001) Prog Polym Sci Oxf 26:1689. doi: 10.1016/S0079-6700(01)00022-3 CrossRefGoogle Scholar
  12. 12.
    Tian M, Lu Y, Liang W, Cheng L, Zhang L (2006) Polym J 38:1105. doi: 10.1295/polymj.PJ2005231 CrossRefGoogle Scholar
  13. 13.
    Jacob M, Francis B, Varughese KT, Thomas S (2006) Macromol Mater Eng 291:1119. doi: 10.1002/mame.200600171 CrossRefGoogle Scholar
  14. 14.
    Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Compos Sci Technol 67:1627. doi: 10.1016/j.compscitech.2006.07.003 CrossRefGoogle Scholar
  15. 15.
    Semsarzadeh MA (1986) Polym Compos 7:23. doi: 10.1002/pc.750070106 CrossRefGoogle Scholar
  16. 16.
    John MJ, Francis B, Varughese KT, Thomas S (2008) Compos Part A 39:352. doi: 10.1016/j.compositesa.2007.10.002 CrossRefGoogle Scholar
  17. 17.
    Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) J Appl Polym Sci 102:1974. doi: 10.1002/app.24584 CrossRefGoogle Scholar
  18. 18.
    Zhao J, Feng Y, Chen X (2002) Polym-Plast Technol Eng 41:723. doi: 10.1081/PPT-120006444 CrossRefGoogle Scholar
  19. 19.
    Wang Q, Chen H, Liu Y (2002) Polym-Plast Technol Eng 41:215. doi: 10.1081/PPT-120002564 CrossRefGoogle Scholar
  20. 20.
    Nakason C, Saiwaree S, Tatun S, Kaesaman A (2006) Polym Test 25:656. doi: 10.1016/j.polymertesting.2006.03.011 CrossRefGoogle Scholar
  21. 21.
    Li HM, Chen HB, Shen ZG, Lin S (2002) Polymer (Guildf) 43:5455. doi: 10.1016/S0032-3861(02)00369-5 CrossRefGoogle Scholar
  22. 22.
    Zhou YB, Wang SF, Zhang Y, Zhang YX (2006) J Polym Sci Part B. Polym Phys 44:1226. doi: 10.1002/polb.20774 CrossRefGoogle Scholar
  23. 23.
    Du AH, Peng ZL, Zhang Y, Zhang YX (2003) J Appl Polym Sci 89:2192. doi: 10.1002/app.12476 CrossRefGoogle Scholar
  24. 24.
    Ismail H, Rusli A, Rashid AA (2005) Polym Test 24:856. doi: 10.1016/j.polymertesting.2005.06.011 CrossRefGoogle Scholar
  25. 25.
    Coates J (2000) Interpretation of infrared spectra. A practical approach. Wiley, ChichesterGoogle Scholar
  26. 26.
    Mathew L, Joseph R (2007) J Appl Polym Sci 103:1640. doi: 10.1002/app.25065 CrossRefGoogle Scholar
  27. 27.
    Anthoine G, Arnold R, Boustany K, Campbell J (1975) Eur Rubber J 157:28Google Scholar
  28. 28.
    Jacob M, Thomas S, Varughese KT (2004) Compos Sci Technol 64:955. doi: 10.1016/S0266-3538(03)00261-6 CrossRefGoogle Scholar
  29. 29.
    Kraus G (1963) J Appl Polym Sci 7:861. doi: 10.1002/app.1963.070070306 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zheng Zeng
    • 1
  • Wentan Ren
    • 1
    Email author
  • Chi Xu
    • 2
  • Weiqiang Lu
    • 2
  • Yong Zhang
    • 1
  • Yinxi Zhang
    • 1
  1. 1.Research Institute of Polymer MaterialsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Ningbo Tuopu Vibration Control System Co., LtdNingboChina

Personalised recommendations