Skip to main content
Log in

Preparation and properties of starch oxalate half-ester with different degrees of substitution

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Oxalic acid, a strong dicarbonic acid mainly come from starch, was used to esterify gelatinized corn starch under nonaqueous conditions to give a material with degrees of substitution (DS) ranging from 0.08 to 0.87 depending on the oxalic acid/starch molar ratios used. The reaction product was washed by extraction with 95% ethanol solution and then characterized by using spectroscopic techniques (FT-IR, 1H-NMR and 13C-NMR). The results from these analyses revealed the presence of carbonylic groups, indicating that the esterification reaction was successful. SEM showed that granules of corn starch swelled on gelatinization and the particles had a porous structure favorable to esterification. The effect of different degree of substitution on properties of oxalate starch half-ester was studied by intrinsic viscosity measurement, wide angle X-ray scattering (WAXS), thermogravimetry (TG) and humidity absorption. X-ray diffraction studies revealed the loss of the ordered A-type crystalline structure, characteristic of corn starch. With the increase in DS, Mw (estimated by intrinsic viscosity), the thermal stability of starch oxalate half-ester decreased markedly while its ability to take up water increased due to the introduction of the carboxylic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hamdan S, Hashim DMA, Ahmad M, Embong S (2000) J Polym Res 7(4):237

    Article  CAS  Google Scholar 

  2. Fares MM, El-faqeeh AS, Osman ME (2003) J Polym Res 10(2):119

    Article  CAS  Google Scholar 

  3. Desai SD, Emanuel AL, Sinha VK (2003) J Polym Res 10(4):275

    Article  CAS  Google Scholar 

  4. Zhou J, Zhang J, Ma YH, Tong J (2008) Carbohydr Polym 74:405

    Article  CAS  Google Scholar 

  5. Parandoosh S, Hudson SM (1993) Appl Polym Sci J 48:787

    Article  CAS  Google Scholar 

  6. Fringant C, Desbrieres J, Rinaudo M (1996) Polymer 37:2663

    Article  CAS  Google Scholar 

  7. Staroszczyk H, Tomasik P, Janas P, Poreda A (2007) Carbohydr Polym 69:299

    Article  CAS  Google Scholar 

  8. Sagar AD, Merill EW (1995) Appl Polym Sci J 58:1647

    Article  CAS  Google Scholar 

  9. Liu H, Ramsden L, Corke H (1999) Starch/Stärke 51:249

    Article  CAS  Google Scholar 

  10. Chen Z, Schols HA, Voragen AGJ (2004) Carbohydr Polym 56:219

    Article  CAS  Google Scholar 

  11. Shogren RL, Viswanathan A, Felker F (2000) Starch/Stärke 52:196

    Article  CAS  Google Scholar 

  12. Ou S, Li A, Yang A (2001) Food Chem 74:91

    Article  CAS  Google Scholar 

  13. Aburto J, Alric I, Borredon E (1999) Starch/Stärke 51:132

    Article  CAS  Google Scholar 

  14. Fang JM, Fowler PA, Tomkinson JC, Hill AS (2002) Carbohydr Polym 47:245

    Article  CAS  Google Scholar 

  15. Fang JM, Fowler PA, Sayers C, Williams PA (2004) Carbohydr Polym 55:283

    Article  CAS  Google Scholar 

  16. Wang Y, Wang L (2002) Starch/Stärke 54:25

    Article  CAS  Google Scholar 

  17. Chen Z, Schols HA, Voragen AGJ (2004) Carbohydr Polym 56:219

    Article  CAS  Google Scholar 

  18. Heacock PM, Hertzler SR, Wolf B (2004) Nutr Res 24:581

    Article  CAS  Google Scholar 

  19. Mathew S, Abraham TE (2007) Food Chem 105:579

    Article  CAS  Google Scholar 

  20. Song XY, He GQ, Ruan H, Chen QH (2006) Starch/Stärke 58:109

    Article  CAS  Google Scholar 

  21. Biswas A (2005) Cereal Chem 82:1

    Article  CAS  Google Scholar 

  22. Tomasik P, Schilling CH (2004) 59:176

  23. Kapusniak J, Siemion P (2007) Food Eng J 78:323

    Article  CAS  Google Scholar 

  24. Staroszczyk H, Tomasik P, Janas P, Poreda A (2007) Carbohydr. Polym 69:299

    CAS  Google Scholar 

  25. Karam LB, Ferrero C, Martino MN, ZaritzkyNE GMVE (2006) Inter J Food Sci Techn 41:806

    Google Scholar 

  26. Chung HJ, Lee EJ, Lim ST (2002) Carbohydr Polym 48:287

    Article  CAS  Google Scholar 

  27. Lim MH, Wu HB, Reid DS (2000) Sci Food Agri J 80:1757

    Article  CAS  Google Scholar 

  28. Noda T, Takigawa S, Matsuura-Endo C, Suzuki T, Hashimoto N, Kottearachchi NS, Yamauchi H, Zaidul ISM (2008) Food Chem 110:465

    Article  CAS  Google Scholar 

  29. Zhang SD, Zhang YR, Huang HX (2008) CN Patent 200810026696.x.

  30. Kweon DK, Choi JK, Kim EK, Lim ST (2001) Carbohydr Polym 46:171

    Article  CAS  Google Scholar 

  31. Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S (1999) Bull Chem Soc Japan 72:2785

    Article  CAS  Google Scholar 

  32. Zhang SD, Zhang YR, Zhu J, Wang XL, Yang KK, Wang YZ (2007) Starch/ Stärke 59:258

    Article  CAS  Google Scholar 

  33. Yang BY, Montgomery R (2006) Starch/ Stärke 58:520

    Article  CAS  Google Scholar 

  34. Xu Y, Miladinov V, Hanna MA (2006) Cereal Chem 81:735

    Article  Google Scholar 

  35. Thygesen LG, Lokke MM, Micklander E, Engelsen SB (2003) Trends Food Sci Technol 14:50

    Article  CAS  Google Scholar 

  36. Biswas A, Shogren RL, Kim S, Willett JL (2006) Carbohydr Polym 64:484

    Article  CAS  Google Scholar 

  37. Gonera A, Goclik V, Baum M, Mischnick P (2002) Carbohydr Res 337:2263

    Article  CAS  Google Scholar 

  38. Marsman JH, Pieters RT, Janssen LPBM, Beenackers AACM (1990) Starch/Stärke 42:192

    Article  Google Scholar 

  39. Bragd PL, Besemer AC, Bekkum H (2000) Carbohydr Res 328:355

    Article  CAS  Google Scholar 

  40. Gardea-Hernández G, Ibarra-Gómez R, Flores-Gallardo SG, Hernández-Escobar CA, Pérez-Romo P, Zaragoza-Contreras EA (2008) Carbohydr Polym 71:1

    Article  Google Scholar 

  41. Grote C, Lazik W, Heinze T (2003) Macromol Rapid Commun 24:927

    Article  CAS  Google Scholar 

  42. Zobel HF (1998) Starch/ Stärke 40:1

    Article  Google Scholar 

  43. Rudnik E, Matuschek G, Milanov N, Kettrup A (2005) Thermochim Acta 427:163

    Article  CAS  Google Scholar 

  44. Forssell P, Hamunen A, Autio K, Suortti T, Poutanen K (1995) Starch/Stärke 47:371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of “11th Five-Year Plan” of national scientific and technological supporting projects (2006BAK06B062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SD., Zhang, YR., Huang, HX. et al. Preparation and properties of starch oxalate half-ester with different degrees of substitution. J Polym Res 17, 43–51 (2010). https://doi.org/10.1007/s10965-009-9288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9288-5

Keywords

Navigation