Skip to main content
Log in

Adsorption behavior of hexavalent chromium on synthesized ethylenediamine modified starch

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The starch-based material, ethylenediamine modified cross-linked starch (CAS) was synthesized and employed to remove hexavalent chromium from aqueous solution. Maximum adsorption of total chromium was observed at reaction pH of 4.0 and adsorption equilibrium achieved within 4h. The adsorption process can be described by pseudo-second-order adsorption model and the best-fit isotherm is Freudlich equation. The mechanism is predominately based on electrostatic attraction. The FT-IR spectra indicate that the amino groups of CAS are protonated and the hexavalent chromium ions were effectively adsorbed. Furthermore, studies on chromium release by using inorganic electrolytes confirm the mechanism observed by sorption experiments, which HCrO4 ion plays an important role interacting with CAS. Chromium release increases with increasing negative charge of electrolyte following the sequence PO4 3− > SO4 2− > B4O7 2− > NO3 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crini G (2005) Prog Polym Sci 30:38–70 10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  2. Aly AA (2006) Starch/Stäke 58:391–400

    Article  CAS  Google Scholar 

  3. Yin QF, Ju BZ, Zhang SF, Wang XB, Yang JZ (2008) Carbohydr Polym 72:326–333 10.1016/j.carbpol.2007.08.019

    Article  CAS  Google Scholar 

  4. Xiang B, Li YJ, Ni YM (2004) J Appl Polym Sci 92:3881–3885 10.1002/app.20415

    Article  Google Scholar 

  5. Guo L, Zhang SF, Ju BZ, Yang JZ, Quan X (2006) J Polym Res 13:213–217 10.1007/s10965-005-9028-4

    Article  CAS  Google Scholar 

  6. Cao LQ, Xu SM, Feng S, Peng G, Wang JD (2004) J Polym Res 11:105–108 10.1023/B:JPOL.0000031066.67853.28

    Article  CAS  Google Scholar 

  7. Kowalski Z (1994) J Hazard Mater 37:137–144 10.1016/0304-3894(94)85042-9

    Article  CAS  Google Scholar 

  8. Dupont L, Guillon E (2003) Environ Sci Technol 37:4235–4241 10.1021/es0342345

    Article  CAS  Google Scholar 

  9. Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Sci Total Environ 116:31–52 10.1016/0048-9697(92)90363-W

    Article  CAS  Google Scholar 

  10. Nakano Y, Takeshita K, Tsutsumi T (2001) Water Res 35:496–500 10.1016/S0043-1354(00)00279-7

    Article  CAS  Google Scholar 

  11. Kaminski W, Tomczak E, Jaros K (2008) Desalination 218:281–286 10.1016/j.desal.2007.02.023

    Article  CAS  Google Scholar 

  12. Yiğitoğlu M, Arslan M (2005) Polym Bull 55:259–268 10.1007/s00289-005-0440-z

    Article  Google Scholar 

  13. Fritzen MB, Souza AJ, Silva TAG, Souza L, Nome RA, Fiedler HD, Nome F (2006) J Colloid Interface Sci 296:465–471 10.1016/j.jcis.2005.09.037

    Article  CAS  Google Scholar 

  14. Nakajima A, Baba Y (2004) Water Res 38:2859–2864 10.1016/j.watres.2004.04.005

    Article  CAS  Google Scholar 

  15. Ho YS, McKay G (2000) Water Res 34:735–742 10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  16. Kumar PA, Chakraborty S, Ray M (2008) Chem Eng J 141:130–140 10.1016/j.cej.2007.11.004

    Article  CAS  Google Scholar 

  17. Bayramoğlu G, Arıca MY (2005) Separ Purif Tech 45:192–199 10.1016/j.seppur.2005.03.009

    Article  Google Scholar 

  18. Langmuir I (1918) J Am Chem Soc 40:1361–1401 10.1021/ja02242a004

    Article  CAS  Google Scholar 

  19. Giles CH, Smith D, Huitson A (1974) J Colloid Interface Sci 47:755–765 10.1016/0021-9797(74)90252-5

    Article  CAS  Google Scholar 

  20. Hinz C (2001) Geoderma 99:225–243 10.1016/S0016-7061(00)00071-9

    Article  CAS  Google Scholar 

  21. Freundlich HMF (1906) Z Phys Chem 57:385–470

    CAS  Google Scholar 

  22. Reddad Z, Gérente C, Andrès Y, Ralet MC, Thibault JF, Le Cloirec P (2002) Carbohydr Polym 49:23–31 10.1016/S0144-8617(01)00301-0

    Article  CAS  Google Scholar 

  23. Vongchan P, Sajomsang W, Subye D, Kongtawelert P (2002) Carbohydr Res 337:1233–1236 10.1016/S0008-6215(02)00098-8

    Article  Google Scholar 

  24. Li J, Qi T, Wang L, Liu C, Zhang Y (2007) Mater Lett 61:3197–3200 10.1016/j.matlet.2006.11.079

    Article  CAS  Google Scholar 

  25. Kharlampieva E, Sukhishvili SA (2004) Langmuir 20:9677–9685 10.1021/la048763d

    Article  CAS  Google Scholar 

  26. Pristinski D, Kozlovskaya V, Sukhishvili SA (2005) J Chem Phys 122:0149071–0149079 10.1063/1.1829255

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 20577034) and Shanghai Leading Academic Discipline Project (No. P1304), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengju Ou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, R., Ou, S., Xiang, B. et al. Adsorption behavior of hexavalent chromium on synthesized ethylenediamine modified starch. J Polym Res 16, 703–708 (2009). https://doi.org/10.1007/s10965-009-9276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9276-9

Keywords

Navigation