Skip to main content
Log in

Comparative study on phase and properties between rPET/PS and LCP/PS in situ microfibrillar-reinforced composites

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Microfibrillar-reinforced composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate) (rPET), and polystyrene (PS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of LCP/PS and rPET/PS blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into PS significantly improved the processability. The potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as-extruded strand. Although the viscosity ratio of rPET/PS system was lower than that of LCP/PS system, most rPET domains appeared as small droplets. An addition of LCP and rPET into PS matrix improved the thermal resistance in air significantly. The obtained results suggested the high potential of rPET as a processing aid and thermally stable reinforcing-material similar to LCP. The mechanical properties of the LCP-containing blends were mostly higher than those of the corresponding rPET-containing blends when compared at the same blend composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kiss G (1987) Polym Eng Sci 27:410

    Article  CAS  Google Scholar 

  2. Tjong S (2003) Mater Sci Eng R41:1

    CAS  Google Scholar 

  3. Dutta D, Fruitwala H, Kohli A, Weiss RA (1990) Polym Eng Sci 30:1005

    Article  CAS  Google Scholar 

  4. Pawlikowski GT, Dutta D, Weiss RA (1991) Annu Rev Mater Sci 21:159

    Article  CAS  Google Scholar 

  5. Friedrich K, Evstatiev M, Farikov S, Evstatiev O, Ishii M, Harrass M (2005) Compos Sci Technol 65:107 doi:10.1016/j.compscitech.2004.06.008

    Article  CAS  Google Scholar 

  6. Kalfoglou NK, Skafidas DS, Sotiropoulou DD (1994) Polymer (Guildf) 35:3624 10.1016/0032–3861(94)90538-X

    Article  CAS  Google Scholar 

  7. Aglietto M, Coltelli MB, Savi S, Lochiatto F, Ciardelli F, Giani M (2004) J Mater Cycles Waste Manag 6:13

    Article  CAS  Google Scholar 

  8. Taepaiboon P, Junkasem J, Dungtungee R, Amornsakchai T, Supaphol P (2006) J Appl Polym Sci 120:1173 doi:10.1002/app.24402

    Article  CAS  Google Scholar 

  9. Fuchs C, Bhattacharyya D, Fakirov S (2006) Compos Sci Technol 66:3161 doi:10.1016/j.compscitech.2005.02.023

    Article  CAS  Google Scholar 

  10. Santos P, Pezzin SH (2003) J Mater Process Technol 143–144:517 doi:10.1016/S0924-0136(03)00391-1

    Article  CAS  Google Scholar 

  11. Evstatiev M, Fakirov S, Krasteva B, Friedrich K, Covas JA, Cunha AM (2002) Polym Eng Sci 42:826

    Article  CAS  Google Scholar 

  12. Pawlak A, Morawiec J, Pazzagli F, Pracella M, Galeski A (2002) J Appl Polym Sci 86:1473 doi:10.1002/app.11307

    Article  CAS  Google Scholar 

  13. Ávila AF, Duarte MV (2003) Polym Degrad Stabil 80:373 10.1016/S0141–3910(03)00025–9

    Article  CAS  Google Scholar 

  14. Zhang H, Guo W, Yu Y, Li B, Wu C (2007) Eur Polym J 43:3662 doi:10.1016/j.eurpolymj.2007.05.001

    Article  CAS  Google Scholar 

  15. Evstatiev M, Fakirov S (1992) Polymer (Guildf) 33:877 doi:10.1016/0032-3861(92)90354-Y

    Article  CAS  Google Scholar 

  16. Ju MY, Chang FC (2000) Polymer (Guildf) 41:1719 doi:10.1016/S0032-3861(99)00355-9

    Article  CAS  Google Scholar 

  17. Maa CT, Chang FC (1993) J Appl Polym Sci 49:913 doi:10.1002/app.1993.070490517

    Article  CAS  Google Scholar 

  18. Hsieh TT, Tiu C, Hsieh KH, Simon GP (2000) J Appl Polym Sci 77:2319 doi:10.1002/1097-4628(20000906)77:10<2319::AID-APP26>3.0.CO;2-#

    Article  CAS  Google Scholar 

  19. Isayev AI, Modic M (1987) Polym Compos 8:158 doi:10.1002/pc.750080305

    Article  CAS  Google Scholar 

  20. Blizard KG, Baird DG (1987) Polym Eng Sci 27:653

    Article  CAS  Google Scholar 

  21. Mehta A, Isayev AI (1991) Polym Eng Sci 3:963

    Article  Google Scholar 

  22. Verhoogt H, Willems CRJ, Van Dam J, De Boer AP (1993) Polym Eng Sci 33:754

    Article  CAS  Google Scholar 

  23. Saikrasun S, Bualek-Limcharoen S, Kohjiya S, Urayama K (2003) J Appl Polym Sci 89:2676 doi:10.1002/app.12385

    Article  CAS  Google Scholar 

  24. Saikrasun S, Amornsakchai T (2006) J Appl Polym Sci 101:1610 doi:10.1002/app.23564

    Article  CAS  Google Scholar 

  25. Seo Y, Kim KU (1998) Polym Eng Sci 38:596

    Article  CAS  Google Scholar 

  26. Postema AR, Fenis PJ (1997) Polymer (Guildf) 38:5557 doi:10.1016/S0032-3861(97)00099-2

    Article  CAS  Google Scholar 

  27. Chan CK, Whitehouse C, Gao P, Chai CK (1997) Polymer (Guildf) 42:7847 doi:10.1016/S0032–3861(01)00265–8

    Article  Google Scholar 

  28. Jang BN, Wilkie CA (2005) Polymer (Guildf) 46:2933 doi:10.1016/j.polymer.2005.01.098

    Article  CAS  Google Scholar 

  29. Peterson JD, Vyazovkin S, Wight AA (2001) Macromol Chem Phys 202:775 doi:10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G

    Article  CAS  Google Scholar 

  30. Saikrasun S, Wongkalasin O (2005) Polym Degrad Stabil 88:300 doi:10.1016/j.polymdegradstab.2004.11.004

    Article  CAS  Google Scholar 

  31. Sato H, Kikuchi T, Koide N, Furuya K (1996) J Appl Pyrolysis 37:173 doi:10.1016/0165-2370(96)00944-8

    Article  Google Scholar 

  32. Saikrasun S, Amornsakchai T (2008) J Appl Polym Sci 107:2375 doi:10.1002/app.27092

    Article  CAS  Google Scholar 

  33. Girija BG, Sailaja RRN, Madras G (2005) Polym Degrad Stabil 90:147 doi:10.1016/j.polymdegradstab.2005.03.003

    Article  CAS  Google Scholar 

  34. Villain P, Coudane J, Vert M (1995) Polym Degrad Stabil 49:393 doi:10.1016/0141-3910(95)00121-2

    Article  CAS  Google Scholar 

  35. Dzieciol M, Trzeszczynski JJ (1998) Appl Polym Sci 69:2377 doi:10.1002/(SICI)1097-4628(19980919)69:12<2377::AID-APP9>3.0.CO;2–5

    Article  CAS  Google Scholar 

  36. Li XG, Huang MR, Guan GH, Sun T (1998) Polym Int 46:289 doi:10.1002/(SICI)1097-0126(199808)46:4<289::AID-PI993>3.0.CO;2-O

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Office of Commission on Higher Education and Thailand Research Fund (contract grant number, MRG5080415). Financial support from Center of Excellence for Innovation in Chemistry is also gratefully acknowledged. Finally, the authors would like to thank Professor Sauvarop Bualek-Limcharoen for the gift of Rodrun LC3000 liquid crystalline polymer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunan Saikrasun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saikrasun, S., Limpisawasdi, P. & Amornsakchai, T. Comparative study on phase and properties between rPET/PS and LCP/PS in situ microfibrillar-reinforced composites. J Polym Res 16, 443–454 (2009). https://doi.org/10.1007/s10965-008-9247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9247-6

Keywords

Navigation