Advertisement

Journal of Polymer Research

, Volume 16, Issue 4, pp 411–419 | Cite as

Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber

  • Xinxing Zhang
  • Canhui LuEmail author
  • Mei Liang
Article

Abstract

The devulcanization of ground tire rubber (GTR) was carried out with a self-designed pan-mill type mechanochemical reactor. Gel fraction and crosslink density measurements confirmed the occurrence of stress induced mechanochemical devulcanization of GTR. The partially devulcanized GTR (dGTR) was blended with virgin natural rubber (NR) at different ratios. The curing characteristics and mechanical properties of these composites were investigated and compared with those composites of raw ground tire rubber (rGTR) and NR. The results showed that the tensile properties of the dGTR/NR vulcanizates were much better than those of the rGTR/NR vulcanizates, which are comparable to or even better than the virgin vulcanizate, indicating the significant benefit of mechanochemical devulcanization. At the GTR content of 10%, the tensile strength of the dGTR/NR blends increased to 23.2 MPa from 13.7 MPa of the rGTR/NR blends, enhanced by 69% through partial devulcanization of GTR, and the elongation at break increased by 47%.

Keywords

Ground tire rubber Recycling Mechanochemical devulcanization Natural rubber Composites 

Notes

Acknowledgments

The authors would like to thank National High Technology Research and Development Program (863 Program, 2008AA06Z343) for financial support, and thank Analytical and Testing Center of Sichuan University for providing SEM measurement facility.

References

  1. 1.
    Colom X, Cañavate J, Carrillo F, Velasco JI, Pagès P, Mujal R et al (2006) Eur Polym J 42:2369–2378. doi: 10.1016/j.eurpolymj.2006.06.005 CrossRefGoogle Scholar
  2. 2.
    Kojima M, Tosaka M, Ikeda Y (2004) Green Chem 6:84–89. doi: 10.1039/b314137c CrossRefGoogle Scholar
  3. 3.
    Cavalieri F, Padella F, Cataldo F (2003) J Appl Polym Sci 90:1631–1638. doi: 10.1002/app.12829 CrossRefGoogle Scholar
  4. 4.
    Bilgili E, Arastoopour H, Bernstein B (2001) Powder Technol 115:277–289. doi: 10.1016/S0032-5910(00)00383-1 CrossRefGoogle Scholar
  5. 5.
    Shim SE, Yashin VV, Isayev AI (2004) Green Chem 6:291–294. doi: 10.1039/b406419b CrossRefGoogle Scholar
  6. 6.
    Feng W, Isayev AI, Meerwall EV (2004) Polym 45:8459–8467. doi: 10.1016/j.polymer.2004.09.072 CrossRefGoogle Scholar
  7. 7.
    Landini L, Araújo SG, Lugão AB, Wiebeck H (2007) Eur Polym J 43:2725–2731. doi: 10.1016/j.eurpolymj.2007.03.017 CrossRefGoogle Scholar
  8. 8.
    Romine RA, Romine MF (1998) Polym Degrad Stabil 59:353–358. doi: 10.1016/S0141-3910(97)00202-4 CrossRefGoogle Scholar
  9. 9.
    Du ML, Guo BC, J DM (2005) J Polym Res 12:473–482. doi: 10.1007/s10965-005-3046-0 CrossRefGoogle Scholar
  10. 10.
    Xu X, Wang Q, Kong XA, Zhang XD, Huang JG (1996) Plast Rubber Compos Process Appl 25:152–158Google Scholar
  11. 11.
    Shao WG, Wang Q, Wang F, Ch YH (2006) Carbon 44:2708–2714. doi: 10.1016/j.carbon.2006.04.006 CrossRefGoogle Scholar
  12. 12.
    Lu CH, Wang Q (2004) J Mater Process Technol 145:336–344. doi: 10.1016/j.jmatprotec.2003.08.002 CrossRefGoogle Scholar
  13. 13.
    Zhang XX, Lu CH, Liang M (2007) J Appl Polym Sci 103:4087–4094. doi: 10.1002/app.25510 CrossRefGoogle Scholar
  14. 14.
    Zhang W, Lu CH, Liang M (2007) Cellulose 14:447–456. doi: 10.1007/s10570-007-9135-y CrossRefGoogle Scholar
  15. 15.
    Liang M, Lu CH, Huang YG, Zhang CS (2007) J Appl Polym Sci 106:3895–3902. doi: 10.1002/app.26916 CrossRefGoogle Scholar
  16. 16.
    Zhao B, Lu CH, Liang M (2007) Chinese. Chem Lett 18:1353–1356Google Scholar
  17. 17.
    Flory PJ, Rehner J (1943) J Chem Phys 11:521. doi: 10.1063/1.1723792 CrossRefGoogle Scholar
  18. 18.
    Flory PJ (1990) In: Principles of polymer chemistry. Cornell University Pres, Ithaca, NY, p 584Google Scholar
  19. 19.
    Kraus G (1963) J Appl Polym Sci 7:861. doi: 10.1002/app.1963.070070306 CrossRefGoogle Scholar
  20. 20.
    Tripathy AR, Morin JE, Williams DE, Eyles SJ, Farris RJ (2002) Macromolecules 36:4621Google Scholar
  21. 21.
    Yehia AA, Mull MA, Ismail MN, Hefny YA, Abdel-Bary EM (2004) J Appl Polym Sci 93:33. doi: 10.1002/app.20349 CrossRefGoogle Scholar
  22. 22.
    Zhang XX, Lu CH, Liang M (2007) Plast Rubber Compos 36:370–376. doi: 10.1179/174328907X237584 CrossRefGoogle Scholar
  23. 23.
    Ishiaku US, Chong CS, Ismail H (2000) Polym Test 19:517. doi: 10.1016/S0142-9418(99)00021-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations