Skip to main content

Advertisement

Log in

Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The devulcanization of ground tire rubber (GTR) was carried out with a self-designed pan-mill type mechanochemical reactor. Gel fraction and crosslink density measurements confirmed the occurrence of stress induced mechanochemical devulcanization of GTR. The partially devulcanized GTR (dGTR) was blended with virgin natural rubber (NR) at different ratios. The curing characteristics and mechanical properties of these composites were investigated and compared with those composites of raw ground tire rubber (rGTR) and NR. The results showed that the tensile properties of the dGTR/NR vulcanizates were much better than those of the rGTR/NR vulcanizates, which are comparable to or even better than the virgin vulcanizate, indicating the significant benefit of mechanochemical devulcanization. At the GTR content of 10%, the tensile strength of the dGTR/NR blends increased to 23.2 MPa from 13.7 MPa of the rGTR/NR blends, enhanced by 69% through partial devulcanization of GTR, and the elongation at break increased by 47%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Colom X, Cañavate J, Carrillo F, Velasco JI, Pagès P, Mujal R et al (2006) Eur Polym J 42:2369–2378. doi:10.1016/j.eurpolymj.2006.06.005

    Article  CAS  Google Scholar 

  2. Kojima M, Tosaka M, Ikeda Y (2004) Green Chem 6:84–89. doi:10.1039/b314137c

    Article  CAS  Google Scholar 

  3. Cavalieri F, Padella F, Cataldo F (2003) J Appl Polym Sci 90:1631–1638. doi:10.1002/app.12829

    Article  CAS  Google Scholar 

  4. Bilgili E, Arastoopour H, Bernstein B (2001) Powder Technol 115:277–289. doi:10.1016/S0032-5910(00)00383-1

    Article  CAS  Google Scholar 

  5. Shim SE, Yashin VV, Isayev AI (2004) Green Chem 6:291–294. doi:10.1039/b406419b

    Article  CAS  Google Scholar 

  6. Feng W, Isayev AI, Meerwall EV (2004) Polym 45:8459–8467. doi:10.1016/j.polymer.2004.09.072

    Article  CAS  Google Scholar 

  7. Landini L, Araújo SG, Lugão AB, Wiebeck H (2007) Eur Polym J 43:2725–2731. doi:10.1016/j.eurpolymj.2007.03.017

    Article  CAS  Google Scholar 

  8. Romine RA, Romine MF (1998) Polym Degrad Stabil 59:353–358. doi:10.1016/S0141-3910(97)00202-4

    Article  CAS  Google Scholar 

  9. Du ML, Guo BC, J DM (2005) J Polym Res 12:473–482. doi:10.1007/s10965-005-3046-0

    Article  CAS  Google Scholar 

  10. Xu X, Wang Q, Kong XA, Zhang XD, Huang JG (1996) Plast Rubber Compos Process Appl 25:152–158

    CAS  Google Scholar 

  11. Shao WG, Wang Q, Wang F, Ch YH (2006) Carbon 44:2708–2714. doi:10.1016/j.carbon.2006.04.006

    Article  CAS  Google Scholar 

  12. Lu CH, Wang Q (2004) J Mater Process Technol 145:336–344. doi:10.1016/j.jmatprotec.2003.08.002

    Article  CAS  Google Scholar 

  13. Zhang XX, Lu CH, Liang M (2007) J Appl Polym Sci 103:4087–4094. doi:10.1002/app.25510

    Article  CAS  Google Scholar 

  14. Zhang W, Lu CH, Liang M (2007) Cellulose 14:447–456. doi:10.1007/s10570-007-9135-y

    Article  CAS  Google Scholar 

  15. Liang M, Lu CH, Huang YG, Zhang CS (2007) J Appl Polym Sci 106:3895–3902. doi:10.1002/app.26916

    Article  CAS  Google Scholar 

  16. Zhao B, Lu CH, Liang M (2007) Chinese. Chem Lett 18:1353–1356

    CAS  Google Scholar 

  17. Flory PJ, Rehner J (1943) J Chem Phys 11:521. doi:10.1063/1.1723792

    Article  CAS  Google Scholar 

  18. Flory PJ (1990) In: Principles of polymer chemistry. Cornell University Pres, Ithaca, NY, p 584

  19. Kraus G (1963) J Appl Polym Sci 7:861. doi:10.1002/app.1963.070070306

    Article  CAS  Google Scholar 

  20. Tripathy AR, Morin JE, Williams DE, Eyles SJ, Farris RJ (2002) Macromolecules 36:4621

    Google Scholar 

  21. Yehia AA, Mull MA, Ismail MN, Hefny YA, Abdel-Bary EM (2004) J Appl Polym Sci 93:33. doi:10.1002/app.20349

    Article  Google Scholar 

  22. Zhang XX, Lu CH, Liang M (2007) Plast Rubber Compos 36:370–376. doi:10.1179/174328907X237584

    Article  CAS  Google Scholar 

  23. Ishiaku US, Chong CS, Ismail H (2000) Polym Test 19:517. doi:10.1016/S0142-9418(99)00021-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National High Technology Research and Development Program (863 Program, 2008AA06Z343) for financial support, and thank Analytical and Testing Center of Sichuan University for providing SEM measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canhui Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lu, C. & Liang, M. Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber. J Polym Res 16, 411–419 (2009). https://doi.org/10.1007/s10965-008-9243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9243-x

Keywords

Navigation