Skip to main content
Log in

Rheological study on thermal-induced gelation behavior of polyacrylonitrile solution

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermal-induced gelation process of different polyacrylonitrile (PAN) solutions was investigated through dynamic rheological measurements. The rheological material parameters characterizing the gelation behavior of the PAN solutions were measured and the effects of such factors as water content, solvent type and concentration on the gelation process were analyzed. It is found that the gel point T gel of PAN/DMSO (dimethyl sulfoxide)–water solution increases with increased water content in the solution. Also, T gel becomes higher when the solvent has a lower solvency for PAN. A linear relationship between logG′ and logω, logG″ and logω indicates the beginning of gelation. The PAN concentration of the solution affects T gel in a way similar to that of the water content. The relaxation exponent n is found to relate to the fractal dimension of the polymer gel. For PAN/DMSO–water solution, this exponent n remains almost constant when the water content differs. The solvent type and concentration respectively influences n value in their own way. The PAN/DMSO–water solution systems in our work exhibit similar characteristics of gel structure, concluded from the n and d f values of these systems. A logarithmic plot between G′ and G″ can be used to evaluate the structural evolution of the solution, and a comparatively steep slope of the curve is an indication of gelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michon C, Cuvelier G, Launay B (1993) Rheol. Acta 32:94–103 doi:10.1007/BF00396681

    Article  CAS  Google Scholar 

  2. De Gennes PG (1985) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  3. Bashier Z (1992) J Polym Sci Polym Phys 30:1299–1304 doi:10.1002/polb.1992.090301115

    Article  Google Scholar 

  4. Winter HH, Chambon FJ (1986) Rheol 30(2):367–382 doi:10.1122/1.549853

    Article  CAS  Google Scholar 

  5. Te Nijenhuis K, Winter HH (1989) Macromolecules 22:411–414 doi:10.1021/ma00191a074

    Article  CAS  Google Scholar 

  6. Chambon F, Winter HHJ (1987) Rheol 31(8):683–697 doi:10.1122/1.549955

    Article  CAS  Google Scholar 

  7. Cuvelier G, Launay B (1990) Makromol Chem Macromol Symp 40:23–31

    CAS  Google Scholar 

  8. Madbouly SA, Ougizawa T (2004) J Macromol Sci Phys B 43:471

    Google Scholar 

  9. Lairez D, Adam M, Emery JR et al (1992) Macromolecules 25:286–289 doi:10.1021/ma00027a046

    Article  CAS  Google Scholar 

  10. Lin YG, Mallin DT, Chien JCW (1991) Macromolecules 24:850–854 doi:10.1021/ma00004a006

    Article  CAS  Google Scholar 

  11. Masataka S, Hirokazu H, Takashi T (2007) Rheol Acta 46:957–964 doi:10.1007/s00397-007-0178-7

    Article  Google Scholar 

  12. Scalan JC, Winter HH (1991) Macromolecules 24:47–54 doi:10.1021/ma00001a008

    Article  Google Scholar 

  13. Labudzinska A, Ziabicki A (1971) Kolloid Z 243:21 doi:10.1007/BF01500610

    Article  CAS  Google Scholar 

  14. Flodin P (1988) Macromol Chem Macromol Symp 22:253

    CAS  Google Scholar 

  15. Madbouly SA, Otaigbe JU, Nanda AK et al (2005) Macromolecules 38:4014 doi:10.1021/ma050453u

    Article  CAS  Google Scholar 

  16. Winter HH, Morganelli P, Chambon F (1988) Macromolecules 21:532 doi:10.1021/ma00180a048

    Article  CAS  Google Scholar 

  17. Piculell L, Thuresson K, Lindman B (2001) Polym Adv Technol 12:44–69 doi:10.1002/1099-1581(200101/02)12:1/2<44::AID-PAT944>3.0.CO;2-O

    Article  Google Scholar 

  18. Lue A, Zhang L (2008) J Phys Chem B 112:4488–4495 doi:10.1021/jp077685a

    Article  CAS  Google Scholar 

  19. Gao S, Nishinari K (2004) Biomacromolecules 5:175–185 doi:10.1021/bm034302f

    Article  CAS  Google Scholar 

  20. Winter HH, Mours M (1997) Adv Polym Sci 134:165–234 doi:10.1007/3-540-68449-2_3

    Article  CAS  Google Scholar 

  21. Scanlan JC, Winter HH (1991) Macromolecules 24:47–54 doi:10.1021/ma00001a008

    Article  CAS  Google Scholar 

  22. Hess W, Vilgis TA, Winter HH (1988) Macromolecules 21:2536 doi:10.1021/ma00186a037

    Article  CAS  Google Scholar 

  23. Muthukumar M (1989) Macromolecules 22:4656 doi:10.1021/ma00202a050

    Article  CAS  Google Scholar 

  24. Han CD, Jhon MS (1986) J Appl Polym Sci 32:3809–3840 doi:10.1002/app.1986.070320302

    Article  Google Scholar 

  25. Muthukumar M, Winter HH (1986) Macromolecules 19:1284–1285 doi:10.1021/ma00158a064

    Article  CAS  Google Scholar 

  26. Kim JK, Son HW, Lee Y et al (1999) J Polym Sci Polym Phys 37:899–906

    Google Scholar 

  27. Ohta Y, Murase H, Sugiyama H et al (2000) J Appl Polym Sci 40(11):2414–2422

    CAS  Google Scholar 

  28. Chuang HK, Han CD (1984) J Appl Polym Sci 29:2205–2229 doi:10.1002/app.1984.070290625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Basic Research Program (973 Program) (2006CB606505), the Shanghai Fundamental Theory Program (07DJ14002) and the Shanghai Leading Academic Discipline Project (B603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Pan, D. & Pan, N. Rheological study on thermal-induced gelation behavior of polyacrylonitrile solution. J Polym Res 16, 341–350 (2009). https://doi.org/10.1007/s10965-008-9234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9234-y

Key words

Navigation