Skip to main content
Log in

Natural inorganic nanotubes reinforced epoxy resin nanocomposites

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Natural occurred nanotubes, halloysite nanotubes, were modified by silane and incorporated into epoxy resin to form nanocomposites. The morphology of the nanocomposites was characterized by transmission electron microscopy (TEM). Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were performed on the nanocomposites. Flexural property and coefficient of thermal expansion (CTE) of the nanocomposites were also determined. Comparing with the neat resin, about 40% increase in storage modulus at glassy state and 133% at rubbery state were achieved by incorporating 12 wt% modified HNTs into the epoxy matrix. In addition, the nanocomposites exhibited improved flexural strength, char yield and dimensional stability. TEM examination revealed a uniform dispersion of the nanotubes in the epoxy resin. The remarkably positive effects of the HNTs on the performance of the epoxy resin were correlated with the unique characteristics of the HNTs, the uniform dispersion and the possible interfacial reactions between the modified HNTs and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  2. Breuer O, Sundararaj U (2004) Polym Compos 25:630–645

    Article  CAS  Google Scholar 

  3. Rothon RN (1999) Adv Polym Sci 139:67–107

    Article  CAS  Google Scholar 

  4. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  5. Andrews R, Weisenberger MC (2004) Curr Opin Solid State Mater Sci 8:31–37

    Article  CAS  Google Scholar 

  6. Gorga RE, Cohen RE (2004) J Polym Sci Part B: Polym Phys 42:2690–2702

    Article  CAS  Google Scholar 

  7. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Appl Phys Lett 81:5123–5125

    Article  CAS  Google Scholar 

  8. Bai J (2003) Carbon 41:1325–1328

    Article  CAS  Google Scholar 

  9. Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89–112

    Article  CAS  Google Scholar 

  10. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  11. Wu XW, Ruan JF, Ohsuna T, Terasaki O, Che SN (2007) Chem Mater 19:1577–1583

    Article  CAS  Google Scholar 

  12. Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Solid State Commun 136:513–517

    Article  CAS  Google Scholar 

  13. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Miner 40:383–426

    Article  CAS  Google Scholar 

  14. Du ML, Guo BC, Liu MX, Jia DM (2007) Polym J 39:208–212

    Article  CAS  Google Scholar 

  15. Du ML, Guo BC, Jia DM (2006) Eur Polym J 42:1362–1369

    Article  CAS  Google Scholar 

  16. He FA, Zhang LM, Zhang F, Chen LS, Wu Q (2006) J Polym Res-Taiwan 13:483–493

    Article  CAS  Google Scholar 

  17. Bauer F, Mehnert R (2005) J Polym Res-Taiwan 12:483–491

    Article  CAS  Google Scholar 

  18. Liao CS, Ye WB (2003) J Polym Res-Taiwan 10:241–246

    Article  CAS  Google Scholar 

  19. Chang CC, Wei KH, Chang YL, Chen WC (2003) J Polym Res-Taiwan 10:1–6

    Article  CAS  Google Scholar 

  20. Khabashesku VN, Pulikkathara MX (2006) Mendeleev Commun 2:61–66

    Article  CAS  Google Scholar 

  21. Wu HL, Wang CH, Ma CCM, Chiu YC, Chiang MT, Chiang CL (2007) Compos Sci Technol 67:1854–1860

    Article  CAS  Google Scholar 

  22. Yuen SM, Ma CCM, Chiang CL, Lin YY, Teng CC (2007) J Polym Sci Part A: Polym Chem 45:3349–3358

    Article  CAS  Google Scholar 

  23. Liu JQ, Xiao T, Liao K, Wu P (2007) Nanotechnology 18, Art. No. 165701

  24. Yuen SM, Ma CCM, Wu HH, Kuan HC, Chen WJ, Liao SH, Hsu CW, Wu HL (2007) J Appl Polym Sci 103:1272–1278

    Article  CAS  Google Scholar 

  25. Yuen SM, Ma CCM, Lin YY, Kuan HC (2007) Compos Sci Technol 67:2564–2573

    Article  CAS  Google Scholar 

  26. Du ML (2007) Ph.D. Dissertation. South China University of Technology

  27. Zhang YH, Li YQ, Li GT, Huang HT, Chan HLW, Daoud WA, Xin JH, Li LF (2007) Chem Mater 19:1939–1945

    Article  CAS  Google Scholar 

  28. Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Small 1:510–513

    Article  CAS  Google Scholar 

  29. Miyata T, Endo A, Ohmori T, Akiya T, Nakaiwa M (2003) J Colloid Interface Sci 262:116–125

    Article  CAS  Google Scholar 

  30. Meng XY, Wang Z, Tang T (2006) Mater Sci Technol 22:780–786

    Article  CAS  Google Scholar 

  31. Mecholsky JJ Jr (2001) Fractography, fracture mechanics and fractal geometry: an integration. In: Varner JR, Frechette VD, Quinn GD (eds) Fractography of glasses and ceramics III, ceramic trans, vol 64, Am Ceram Soc

  32. Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN (2007) J Mater Chem 17:2351–2358

    Article  CAS  Google Scholar 

  33. d’Almeida JRM, Monteiro SN, Menezes GW, Rodriguez RJS (2007) J Reinf Plast Compos 26:321–330

    Article  CAS  Google Scholar 

  34. Dean K, Krstina J, Tian W, Varley RJ (2007) Macromol Mater Eng 292:415–427

    Article  CAS  Google Scholar 

  35. Becker O, Varley R, Simon G (2002) Polymer 43:4365–4373

    Article  CAS  Google Scholar 

  36. Brown JM, Curliss D, Vaia RA (2000) Chem Mater 12:3376–3384

    Article  CAS  Google Scholar 

  37. Zilg C, Thomann R, Finter J, Mulhaupt R (2000) Macromol Mater Eng 280/281:41–46

    Article  CAS  Google Scholar 

  38. Yung KC, Wang J, Yue TM (2006) Adv Compos Mater 15:371–384

    Article  CAS  Google Scholar 

  39. Brown JM, Curliss D, Vaia RA (2000) Chem Mater 12:3376–3384

    Article  CAS  Google Scholar 

  40. Basara G, Yilmazer U, Bayram G (2005) J Appl Polym Sci 98:1081–1086

    Article  CAS  Google Scholar 

  41. Naous W, Yu XY, Zhang QX, Naito K, Kagawa Y (2006) J Polym Sci Part B: Polym Phys 44:1466–1473

    Article  CAS  Google Scholar 

  42. Hussain F, Chen JH, Hojjati M (2007) Mater Sci Eng A 445:467–476

    Article  CAS  Google Scholar 

  43. Imai T, Sawa F, Nakano T, Ozaki T, Shimizu T, Kozako M, Tanaka T (2006) IEEE T DIELECT EL IN 13:319–326

    Article  CAS  Google Scholar 

  44. Yung KC, Wu J, Yue TM, Xie CS (2006) J Compos Mater 40:567–581

    Article  CAS  Google Scholar 

  45. Yung KC, Wang J, Yue TM (2006) Adv Compos Mater 15:371–384

    Article  CAS  Google Scholar 

  46. Koerner H, Hampton E, Dean D, Turgut Z, Drummy L, Mirau P, Vaia R (2005) Chem Mater 17:1990–1996

    Article  CAS  Google Scholar 

  47. Sun YY, Zhang ZQ, Wong CP (2006) IEEE Trans Compon Packag Technol 29:190–197

    Article  Google Scholar 

  48. Liu WC, Varley RJ, Simon GP (2007) Polymer 48:2345–2354

    Article  CAS  Google Scholar 

  49. Bellenger V, Fontaine E, Fleishmann A, Saporito J, Verdu J (1984) J Polym Degrad Stab 9:195–208

    Article  CAS  Google Scholar 

  50. Liu M, Guo B, Du M, Jia D (2007) Appl Phys A 88:391–395

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China with grant number of 50603005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Guo, B., Du, M. et al. Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15, 205–212 (2008). https://doi.org/10.1007/s10965-007-9160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9160-4

Keywords

Navigation