Skip to main content

Advertisement

Log in

Thermal and spectroscopic analysis of worn polyoxymethylene surfaces and wear debris explaining degradation and polymerisation mechanisms

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Degradation and polymerization of polyoxymethylene homopolymer (POM-H) surfaces after sliding at 8 to 150 MPa and 0.005 m/s over a total sliding distance of 3000 m is investigated by using thermal analysis (DSC, TGA, DTA) and Raman spectroscopy of worn surfaces or wear debris. There is mainly mechanical interaction and slight softening at 8 MPa (relatively high friction, low wear), softening at 16 to 55 MPa (decreasing friction and high wear) and finally melting at 150 MPa (very low friction, overload wear). At low contact pressures, wear debris remains amorphous and degradation of noncrystallised material during sliding manifests in broadening of the melting peak below the melting temperature. Degradation of C–O–C due to chain scission and radical reactions into CH3 end groups are illustrated by Raman spectra. It is confirmed that the debris has long resident times and the maximum polymer surface temperature (T* = 93°C) is below the crystallisation temperature. At intermediate contact pressures, crystallisation results in a polymer fraction with higher thermal resistance. From the calculated temperatures T* = 120 to 150°C, crystallisation is beneficial for coherent transfer with larger particle sizes. At high contact pressures, the wear debris is immediately removed from the contact interface due to melting (T* = 200°C) and has thermal properties similar to the bulk material. There is no reaction between the debris in the interface, resulting in a thick polymer transfer film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ohlin A, Linder L (1993) Biomaterials 14:285

    Article  CAS  Google Scholar 

  2. Shen C, Dumbleton JH (1976) Wear 38:291

    Article  CAS  Google Scholar 

  3. Shen C, Dumbleton JH (1976) Wear 40:371

    Article  CAS  Google Scholar 

  4. Samyn P, De Baets P (2005) Mat Sci Forum 475–479:1077

    Article  Google Scholar 

  5. Breeds AR, Kukureka SN, Mao K et al (1993) Wear 166:85

    Article  CAS  Google Scholar 

  6. Kukureka SN, Chen YK, Hooke CJ et al (1995) Wear 185:1

    Article  CAS  Google Scholar 

  7. Clerico M (1980) Wear 64:259

    Article  CAS  Google Scholar 

  8. Dziadur W (2001) Mater Char 46:131

    Article  CAS  Google Scholar 

  9. Dziadur W, Litak A, Kuciel S et al (1997) In: Proceedings VIIIth 1997 seminar plastics in machine design, Cracow, Poland, 22–24 October

  10. Engel PA, Zhao Z (1996) Wear 193:114

    Article  CAS  Google Scholar 

  11. Palanivelu K, Balakrishnan S, Rengasamy P (2000) Polym Test 19:75

    Article  CAS  Google Scholar 

  12. Uetz H, Wiedmeyer J (eds) (1985) Carl Hanser Verlag, Munchen

  13. Stuart BH (1997), Spectrochim Act A 53:111

    Google Scholar 

  14. Billmayer FW (ed) (1984) Wiley, New York

  15. Quadrant EPP (2002), General purpose plastic products, design manual, http://www.quadrantplastics.com . Cited 29 May 2007

  16. Unal H, Sen U, Mimaroglu A (2000) Tribol Internat 37:727

    Article  CAS  Google Scholar 

  17. Seabra LC, Baptista AM (2002) Wear 253:394

    Article  CAS  Google Scholar 

  18. Samyn P, Tuzolana T, Polym Test (2007) (in press)

  19. Samyn P, De Baets P (2005) Tribol Letters 19:177

    Article  CAS  Google Scholar 

  20. Pascoe MW, Tabor D (1955) Proc R Soc London, A 235:210

    Google Scholar 

  21. Visanawath N, Bellow DG (1995) Wear 181–184:42

    Google Scholar 

  22. Jaeger CJ (1942), Proc R Soc NSW 76:1107

    Google Scholar 

  23. Franklin SE, de Kraker A (2003) Wear 255:766

    Article  CAS  Google Scholar 

  24. Odi-Owei S, Schipper DJ (1991) Wear 148:363

    Article  CAS  Google Scholar 

  25. Mergler YP, Schaake RP, Huis in ‘t Veld AJ (2004) Wear 256:294

    Article  CAS  Google Scholar 

  26. Zhao R (2005) INJ Summer 19

  27. Fakirov S, Fisher EW, Hoffman R, et al (1977) Polymer 18:1121

    Article  CAS  Google Scholar 

  28. Everaert V, Groeninckx G, Aerts L (2000) Polymer 41:1409

    Article  CAS  Google Scholar 

  29. Hasegawa S, Takeshita H, Yoshii F et al (2000) Polymer 41: 111

    Article  CAS  Google Scholar 

  30. Samyn P (2007) Dissertation, Ghent University

  31. Stuart BH (1998) Tribol Internat 31:687

    Article  CAS  Google Scholar 

  32. Furlani M, Ferry A, Franke A, et al (1998) Solid State Ionics 113–115:129

    Article  Google Scholar 

  33. Li TQ, Zhang MQ, Song L, Zeng HM (1999) Polymer 40:4451

    Article  CAS  Google Scholar 

  34. Blach JA, Watson GS, Brown CL, et al (2004) Thin Solid Films 459:95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Samyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samyn, P., Van Driessche, I. & Schoukens, G. Thermal and spectroscopic analysis of worn polyoxymethylene surfaces and wear debris explaining degradation and polymerisation mechanisms. J Polym Res 14, 411–422 (2007). https://doi.org/10.1007/s10965-007-9124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9124-8

Keywords

Navigation