Skip to main content
Log in

Thermal degradation behaviour of aromatic poly(ester–imide) investigated by pyrolysis–GC/MS

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The thermal degradation behaviours of a novel aromatic poly(ester–imide) (PEI) derived from pyromellitic dianhydride and 2,7-bis(4-aminobenzoyloxy)naphthalene have been investigated by thermogravimetric analysis (TGA) and by pyrolysis–gas chromatography/mass spectrometry (pyrolysis–GC/MS). The weight of PEI fell slightly in the temperature range of 350–450 °C in the TGA analysis, but the major weight loss occurred at 520 °C. Evolve gas analysis (EGA) of the PEI showed maximum release of pyrolyzates at 550 °C. The chemical structure of the volatile products resulted from the PEI pyrolysis at different temperatures was identified by pyrolysis–GC/MS. The cleavage of the ester linkage within the polymer chain initiated at 350 °C, and bond scission in the partially hydrolyzed pyromellitimide unit occurred in the temperature range of 450–500 °C. The bonds within the pyromellitimide unit started to cleave at 550 °C. The extensive decomposition of the pyromellitimide segment within the polymer backbone occurred at 600 °C. The possible thermal degradation pathways of this PEI are proposed on the basis of the pyrolysis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Wilson D, Stenzenberger H-D, Hergenrother P-M (1990) Polyimides. Blackie, Glasgow and London

    Google Scholar 

  2. Abadie MJ-M, Mittal B (1991) Polyimides and other high-temperature polymers. Elsevier, Amsterdam

    Google Scholar 

  3. Ghosh M-K, Mittal K-L (1996) Polyimides: Fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  4. Hsiao S-H, Yang C-P, Lin C-K (1995) J Polym Res 2:1

    Article  CAS  Google Scholar 

  5. Tamai S, Yamaguchi A, Ohta M (1996) Polymer 37:3683

    Article  CAS  Google Scholar 

  6. Hsiao S-H, Yu C-H (1996) J Polym Res 3:247

    Article  CAS  Google Scholar 

  7. Hsiao S-H, Huang P-C (1997) J Polym Res 4:189

    Article  Google Scholar 

  8. Wang H-H, Wu S-P (2005) J Polym Res 12:37

    Article  CAS  Google Scholar 

  9. Zheng H-B, Wang Z-Y (2000) Macromolecules 33:4310

    Article  CAS  Google Scholar 

  10. Gao C-L, Wu X-E, Lv G-H, Ding M-X, Gao L-X (2004) Macromolecules 37:2754

    Article  CAS  Google Scholar 

  11. Hsiao S-H, Lin K-H (2005) J Polym Sci A Polym Chem 43:331

    Article  CAS  Google Scholar 

  12. Liaw D-J, Liaw B-Y, Lai S-H (2001) Macromol Chem Phys 202:807

    Article  CAS  Google Scholar 

  13. Liou G-S, Hsiao S-H (2002) J Polym Sci A Polym Chem 40:2564

    Article  CAS  Google Scholar 

  14. Hsiao S-H, Chung C-L, Lee M-L (2004) J Polym Sci A Polym Chem 42:1008

    Article  CAS  Google Scholar 

  15. Hsiao S-H, Yang C-P, Chen C-W (2005) J Polym Res 12:289

    Article  CAS  Google Scholar 

  16. Chung C-L, Tzu T-W, Hsiao S-H (2006) J Polym Res 13:495

    Article  CAS  Google Scholar 

  17. Hsiao S-H, Yang C-P, Yang C-Y (1997) J Polym Sci A Polym Chem 35:1487

    Article  CAS  Google Scholar 

  18. Li F, Fang S, Ge J-J, Honigfort P-S, Chen J-C, Harris F-W, Cheng S Z-D (1999) Polymer 40:4571

    Article  CAS  Google Scholar 

  19. Li F, Ge J-J, Honigfort P-S, Fang S, Chen J-C, Harris F-W, Cheng S Z-D (1999) Polymer 40:4987

    Article  CAS  Google Scholar 

  20. Chou C-H, Reddy D-S, Hsu C-F (2002) J Polym Sci A Polym Chem 40:3615

    Article  CAS  Google Scholar 

  21. Reddy D-S, Chou C-H, Hsu C-F, Lee G-H (2003) Polymer 44:557

    Article  Google Scholar 

  22. Liou G-S, Fang Y-K, Yen H-J (2007) J Polym Res 14:147

    Article  CAS  Google Scholar 

  23. Hsiao S-H, Leu W-T (2004) High Perform Polym 16:461

    Article  CAS  Google Scholar 

  24. Liau C-K, Yang C-K, Viswanath S (1996) Polym Eng Sci 36:2589

    Article  CAS  Google Scholar 

  25. Xie W, Pan W-P, Chuang K-C (2001) Thermochim Acta 367:143

    Article  Google Scholar 

  26. Hornsby P-R, Wang J, Rothon R, Jackson G, Wilkinson G, Cossick K (1996) Polym Degrad Stab 51:235

    Article  CAS  Google Scholar 

  27. So Y-H, Froelicher S-W, Kaliszewski B, DeCaire R (1999) Macromolecules 32:6565

    Article  CAS  Google Scholar 

  28. Perng L-H (2000) J Polym Res 7:185

    Article  CAS  Google Scholar 

  29. Perng L-H (2001) J Appl Polym Sci 79:1151

    Article  CAS  Google Scholar 

  30. Ren L, Fu W, Luo Y, Lu H, Jia D, Shen J, Pang B, Ko T-M (2004) J Appl Polym Sci 91:2295

    Article  CAS  Google Scholar 

  31. Guo W, Leu W-T, Hsiao S-H, Liou G-S (2006) Polym Degrad Stab 91:21

    Article  CAS  Google Scholar 

  32. Dautel O-J, Wantz G, Flot D, Lere-Porte J-P, Moreau J J-E, Parneix J-P, Serein-Spirau F, Vignau L (2005) J Mater Chem 15:4446

    Article  CAS  Google Scholar 

  33. Blomquist A-T, Westfahl J-C (1952) J Am Chem Soc 74:4073

    Article  CAS  Google Scholar 

  34. Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T (1996) Carbon 34:201

    Article  CAS  Google Scholar 

  35. Carroccio S, Puglisi C, Montaudo G (1999) Macromol Chem Phys 200:2345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Huei Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Chuang, TH., Huang, ST. et al. Thermal degradation behaviour of aromatic poly(ester–imide) investigated by pyrolysis–GC/MS. J Polym Res 14, 401–409 (2007). https://doi.org/10.1007/s10965-007-9123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9123-9

Keywords

Navigation