Journal of Polymer Research

, Volume 8, Issue 1, pp 27–35 | Cite as

Porous chitin matrices for tissue engineering: Fabrication and in vitro cytotoxic assessment



A series of porous chitin matrices were fabricated by freezing and lyophilization of chitin gels cast from a 5% N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl) solvent system. The porous chitin matrices were found to have uniform pore structure in the micron range. Scanning electron microscopy (SEM) revealed that the pore size of the porous chitin matrices varied according to the freezing method prior to lyophilization. By subjecting the chitin gels to dry-ice/acetone (−38 °C), the final porous chitin matrix gave pore dimensions measuring 200–500 μm with 69% porosity. A smaller pore dimension of 100–200 μm with 61% porosity was produced when the chitin gels were frozen by liquid nitrogen (−196 °C) and 10 μm pores with 54% porosity were produced when the gels were placed in a freezer (−20 °C) for 20 min. In comparison, lower porosity structures of ca. 10% porosity were obtained from both air-dried and critical point dried chitin gels. Furthermore, a low gel concentration (< 0.5%, w/w) also produced porous morphology by vacuum drying without any freezing and lyophilization. The resulting pore properties influenced the water uptake profile of the materials in water. These porous chitin matrices are found to be non-cytotoxic and to hold promise as potential structural scaffolds for cell growth and proliferation in vitro.


Porous chitin matrices Lyophilization Tissue engineering MTT assays in vitro Cytotoxicity assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gallardo, C. Elvira, R. J. San and B. A. Lopez, Rev. Plast. Mod., 77, 60 (1979).Google Scholar
  2. 2.
    E. Wintermantel and J. Mayer, Anisotropic Biomaterials: Strategies and Developments for Bone Implants, D. L. Wise, D. E. Altobelli, E. R. Swartz, Eds., Encyclopedic Handbook of Biomaterials and Bioengineering, New York: M. Dekker Inc; 3, 1995.Google Scholar
  3. 3.
    R. C. Thomson, M. C. Wake, M. J. Yaszemski and A. G. Mikos, Adv. Polym. Sci., 122, 245 (1995).Google Scholar
  4. 4.
    I. V. Yannas, Angew Chem., Int. Ed. Eng., 29, 20 (1990).CrossRefGoogle Scholar
  5. 5.
    E. A. Eser, E. Y. Murat and D. P. George, Neurol Res., 20, 648 (1998).Google Scholar
  6. 6.
    M. V. Davis and J. P. Vacanti, Biomaterials, 17, 365 (1996).CrossRefGoogle Scholar
  7. 7.
    A. G. Mikos, G. Sarakinos, M. D. Lyman, D. E. Ingber, J. P. Vacanti and R. Langer, Polym. Mater. Sci. Eng., 66, 34 (1992).Google Scholar
  8. 8.
    D. A. Grande, C. Halberstadt, G. Naughton, R. Schwartz and R. Manji, J. Biomed. Mater. Res., 34, 211 (1997).CrossRefGoogle Scholar
  9. 9.
    L. E. Freed, J. C. Marquis, A. Nohria, K. Emmanual, A. G. Mikos and R. J. Langer, J. Biomed. Mater. Res., 27, 11 (1993).CrossRefGoogle Scholar
  10. 10.
    S. B. Nicoll, A. Wedrychowska, N. R. Smith and R. S. Bhatnagar, Mater. Res. Soc. Symp. Proc., 3, 530 (1998).Google Scholar
  11. 11.
    K. Whang, D. C. Tsai, E. K. Nam, M. Aitken, S. M. Sprague, P. K. Patel and K. E. Healy, J. Biomed. Mater. Res., 42, 491 (1998).CrossRefGoogle Scholar
  12. 12.
    R. Zhang, P. X. May and A. Ann, J. Biomed. Mater. Res., 44, 446 (1999).CrossRefGoogle Scholar
  13. 13.
    D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti and R. Langer, Biomaterials, 17, 1417 (1996).Google Scholar
  14. 14.
    J. M. Williams and D. A. Wrobleski, J. Mat. Sci. Lett., 14, 4062 (1989).Google Scholar
  15. 15.
    J. H. Aubert and A. P. Sylwester, Chemtech, 21, 234 (1991).Google Scholar
  16. 16.
    C. J. Doillon, C. F. Whyne, S. Brandwein and F. H. Silver, J. Biomed. Mater. Res., 20, 1219 (1986).CrossRefGoogle Scholar
  17. 17.
    F. Bertod, G. Saintigny, F. Chretien, D. Hayek, C. Collomble and O. Damour, Clin. Mater., 15, 259 (1994).Google Scholar
  18. 18.
    M. S. Widmer, P. K. Gupta, L. Lu, R. K. Meszlenyi, Biomaterials, 19, 1945 (1998).CrossRefGoogle Scholar
  19. 19.
    J. H. De Groot, H. W. Kujper and A. J. Penings, J. Mater. Sci., Mat. Med., 8, 707 (1997).Google Scholar
  20. 20.
    A. G. Mikos, A. J. Thorsen, L. A. Czermonka, B. Yuan, R. Langer, Polymer, 35, 1068 (1994).CrossRefGoogle Scholar
  21. 21.
    S. Hirano, N. Matsuda, O. O. Miura and T. Tanaka, Carbohyd Res., 71, 344 (1979).Google Scholar
  22. 22.
    F. L. Mi, SS Shyu, C. T. Chen and J. Y. Schoung, Biomaterials, 20, 1603 (1999)CrossRefGoogle Scholar
  23. 23.
    S. Shah, R. Qapish, V. Patel and M. Amiji, J. Pharm. Pharmacology, 51, 667 (1999)Google Scholar
  24. 24.
    K. Sonomoto, N. Chinachoti, N. Endo and A. Ishizaki, J. Mol. Cat. B, Enzymatic, 10, 325 (2000)Google Scholar
  25. 25.
    S. V. Madihally and H. W. T. Matthew, Biomaterials, 20, 1133 (1999).CrossRefGoogle Scholar
  26. 26.
    P. R. Klokkevold, H. Fukayama, E. C. Sung and C. N. Bertolami, J. Oral and Maxillofacial Surgery, 57, 49 (1999).Google Scholar
  27. 27.
    P. A. Sandford and A. Steinnes, ACS Sym. Series, 467, 430 (1991).Google Scholar
  28. 28.
    W. Paul and C. P. Sharma, STP Pharma. Sci., 10, 5 (2000).Google Scholar
  29. 29.
    S. B. Rao and C. P. Sharma, J. Biomed. Mater. Res., 34, 21 (1997).CrossRefGoogle Scholar
  30. 30.
    A. Baxter, M. Dillon, K. D. A. Taylor and G. A. F. Roberts, Int. J. Biol. Macromol., 166, 14 (1992).Google Scholar
  31. 31.
    T. Mosmann, J. Immunol. Meth., 55, 65 (1983).Google Scholar
  32. 32.
    K. Heeg, L. Reimann, D. Kabelitz, C. Hardt and H. Wagner, J. Immunol. Meth., 77, 237 (1985).CrossRefGoogle Scholar
  33. 33.
    L. Green, J. L. Reade and C. F. Ware, J. Immunol. Meth., 70, 257 (1984).CrossRefGoogle Scholar
  34. 34.
    F. Denizot and R. Lang, J. Immunol. Meth., 89, 271 (1986).CrossRefGoogle Scholar
  35. 35.
    S. Lilia and C. Smadar, Biomaterials, 18, 583 (1997).Google Scholar
  36. 36.
    N. Dagalakis, J. Flink, P. Stasikelis, J. F. Burke and I. V. Yannas, J. Biomed. Mater. Res., 14, 511 (1980).CrossRefGoogle Scholar
  37. 37.
    S. V. Madihally, V. K. Watson and H. M. T. Matthew, Proceedings of the fifth world biomaterials congress, 238 (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2001

Authors and Affiliations

  • Kok Sum Chow
    • 1
  • Eugene Khor
    • 1
  • Andrew Chwee Aun Wan
    • 2
  1. 1.Department of ChemistryNational University of SingaporeSingapore
  2. 2.Institute of Materials Research & EngineeringNational University of SingaporeSingapore

Personalised recommendations