Skip to main content
Log in

Molecular weight dependence of melt crystallization behavior and crystal morphology of low molecular weight linear polyethylene fractions

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Melt crystallization behavior and corresponding crystal morphology of five low molecular weight (3,900 ≤ MW ≤ 20,800) linear polyethylene (PE) fractions have been investigated. The overall crystallization data indicate that the lower molecular weight (MW) fraction possesses a higher crystallization rate at the same undercooling (ΔT). On the contrary, at the same crystallization temperature (Tc) the rate increases with MW. The Avrami exponent (n) varies from ca. 3 to 4 with decreasing ΔT for the fractions studied, which implies the nucleation process changes from athermal type to thermal type as Tc increases. For the low MW PE’s, the different crystal growth regimes (regime I and II) have been first time identified via linear crystal growth rate (G) measurements. The regime I/II transition temperatures are close to previously reported data, which were obtained through a different method. As reported for intermediate MW PE’s, the transitions occur at an almost constant ΔT of 17.5±1 °C for each fraction studied. Morphological study shows that single crystals could be formed isothermally at low ΔT’s. Typical banded spherulites and axialites, which are MW and ΔT dependent, are also observed. Orthorhombic structure is ascertained to be the dominant crystal structure that exists irrespective of MW and crystal growth regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Hoffman, L. J. Frolen, G. S. Ross and J. I. Lauritzen, Jr., J. Res. Natl. Bur. Stds. Sect. A, 79A, 671 (1975).

    CAS  Google Scholar 

  2. E. Ergoz, J. G. Fatou and L. Mandelkern, Macromolecules, 5, 147 (1972).

    Article  CAS  Google Scholar 

  3. J. G. Fatou, C. Marco and L. Mandelkern, Polymer, 31, 890 (1990).

    CAS  Google Scholar 

  4. J. G. Fatou, C. Marco and L. Mandelkern, Polymer, 31, 1685 (1990).

    CAS  Google Scholar 

  5. G. Ungar and A. Keller, Polymer, 28, 1899 (1987).

    Article  CAS  Google Scholar 

  6. G. Ungar and A. Keller, Polymer, 27, 1835 (1986).

    Article  CAS  Google Scholar 

  7. A. Toda, Colloid Polym. Sci., 270, 667 (1992).

    Article  CAS  Google Scholar 

  8. A. Toda, Faraday Disc. Chem. Soc., 95, 129 (1993)

    CAS  Google Scholar 

  9. M. Nishi, M. Hikosaka, A. Toda and M. Takahashi, Polymer, 39, 1591 (1998).

    Article  CAS  Google Scholar 

  10. M. Okada, M. Nishi, M. Takahashi, H. Matsuda, A. Toda and M. Hikosaka, Polymer, 39, 4535 (1998).

    Article  CAS  Google Scholar 

  11. P. J. Flory and A. Vrij, J. Am. Chem. Soc., 85, 3548 (1963).

    Article  CAS  Google Scholar 

  12. D. C. Bassett, Polymer, 17, 460 (1976).

    CAS  Google Scholar 

  13. B. Wunderlich and G. Czornyj, Macromolecules, 10, 906 (1977).

    Article  CAS  Google Scholar 

  14. L. Mandelkern, M. Glotin and R. A. Benson, Macromolecules, 14, 22 (1981).

    Article  CAS  Google Scholar 

  15. G. M. Stack, L. Mandelkern and I. G. Voigt-Martin, Macromolecules, 17, 321 (1984).

    Article  CAS  Google Scholar 

  16. P. J. Barham and A. Keller, J. Polym. Sci., Polym. Phys. Ed., 27, 1029 (1989).

    CAS  Google Scholar 

  17. L. Mandelkern, A. Prasad, R.G. Alamo and G. M. Stack, Macromolecules, 23, 3696 (1990).

    CAS  Google Scholar 

  18. A. Galeski and M. Psarski, Macromol. Symp., 104, 183 (1996).

    CAS  Google Scholar 

  19. F. C. Chiu, Q. Fu, M. Leland and S. Z. D. Cheng, J. Macromol. Sci., Phys. Ed., B36, 553 (1997).

    CAS  Google Scholar 

  20. J. Maxfield and L. Mandelkern, Macromolecules, 10, 1141 (1977).

    Article  CAS  Google Scholar 

  21. M. Broadhurst, J. Res. Natl. Bur. Stds. A, 70A, 481 (1966).

    Google Scholar 

  22. B. Wunderlich, Thermal Analysis, Academic Press, New York, 1990

    Google Scholar 

  23. M. Avrami, J. Chem. Phys., 7, 1103 (1939).

    Article  CAS  Google Scholar 

  24. M. Avrami, J. Chem. Phys., 8, 212 (1940).

    Article  CAS  Google Scholar 

  25. M. Avrami, J. Chem. Phys., 9, 177 (1941).

    Article  CAS  Google Scholar 

  26. B. Wunderlich, Macromolecular Physics, Vol. 2, Academic Press, New York, 1976.

    Google Scholar 

  27. S. Z. D. Cheng and J. Chen, J. Polym. Sci., Polym. Phys. Ed., 29, 311 (1991).

    CAS  Google Scholar 

  28. R. S. Stein, “Small Angle Light Scattering from the Polymeric Solid State”, Static and Dynamic Properties of the Polymeric Solid State, Ed. by R. A. Pethrick and R. W. Richard, D. Reidel, Boston, 1982.

    Google Scholar 

  29. Von P. Zugenmaier and H. J. Cantow, Kolloid Z. Z. Polymer, 230, 229 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Chyou Chiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, FC., Fu, Q. & Hsieh, E.T. Molecular weight dependence of melt crystallization behavior and crystal morphology of low molecular weight linear polyethylene fractions. J Polym Res 6, 219–229 (1999). https://doi.org/10.1007/s10965-006-0091-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-0091-2

Keywords

Navigation