Skip to main content
Log in

Effect of quenching temperature on the morphology and separation properties of polypropylene microporous tubular membranes via thermally induced phase separation

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polypropylene microporous tubular membranes were prepared by using camphene as solvent and through thermally induced phase separation at various quenching temperatures. Characterization of the resulting membrane included scanning electron microscopy, differential scanning calorimetry, and wide angle X-ray scattering. Microscopic observation showed that the membrane was composed of spherical clusters and had a leafy structure. The crystallinity increased with the quenching temperature. The crystalline structure was of smectic form. Permeation performance was also determined, including pure water permeability and retention of dextran. The results showed that at lower quenching temperatures, the structure of membrane was denser. Therefore, the permeability was lower and the retention was higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, London, 1991, Ch. III.

    Google Scholar 

  2. A. J. Castro, U.S. Pat. 4,247,498 (1980).

  3. K. Gerlach, E. Kessler and W. Henne, Ger. Pat. 3,026,718 (1982).

  4. T. Ichikawa, K. Takahara, K. Shimoda, Y. Seita and M. Emi, Belg. Pat. 903,395 (1986).

    Google Scholar 

  5. K. Gerlach and E. Kessler, U.S. Pat. 4,564,488 (1986).

  6. K. Takahara, K. Shimoda, K. Tatebe and M. Yamazaki, Eur. Pat. Appl. 209,465 (1987).

    Google Scholar 

  7. K. Takahara and K. Kido, Jpn. Pat. 01,033,269 (1989).

  8. K. Tatebe, M. Yamazaki and K. Kido, Eur. Pat. Appl. 314,581 (1989).

    Google Scholar 

  9. M. Yamazaki and K. Tatebe, Eur. Pat. Appl. 353,148 (1990).

    Google Scholar 

  10. M. Yamazaki, Jpn Pat. 02,174,921 (1990).

  11. T. W. Beck, M. B. Lee, R. D. Grant and R. J. W. Streeton, Int. Pat. Appl. 9,117, 204 (1991).

    Google Scholar 

  12. E. Suda, M. Watanabe, T. Nakamaru and K. Isono, Jpn. Pat. 06,269,645 (1994).

  13. D. R. Lloyd and T. B. Meluch, Materials Science of Synthetic Membranes, American Chemical Society, 1985, pp. 47–79.

  14. D. R. Lloyd, J. W. Barlow and K. E. Kinzer, Microporous Membrane Formation via Thermally-Induced Phase Separation, Membrane Materials and Processes, AIChE Symposium Series, No. 261, 84 (1988) pp. 28–41.

  15. D. R. Lloyd, K. E. Kinzer and H. S. Tseng, J. Membrane Sci., 52, 239 (1990).

    Article  CAS  Google Scholar 

  16. D. R. Lloyd, S. S. Kim and K. E. Kinzer, J. Membrane Sci., 64, 1 (1991).

    Article  CAS  Google Scholar 

  17. S. S. Kim and D. R. Lloyd, J. Membrane Sci., 64, 13 (1991).

    CAS  Google Scholar 

  18. G. B. A. Lim, S. S. Kim, Q. Ye, Y. F. Wang and D. R. Lloyd, J. Membrane Sci., 64, 31 (1991).

    Article  CAS  Google Scholar 

  19. S. S. Kim, G. B. A. Lim, A. A. Alwattari, Y. F. Wang and D. R. Lloyd, J. Membrane Sci., 64, 41 (1991).

    CAS  Google Scholar 

  20. A. A. Alwattari and D. R. Lloyd, J. Membrane Sci., 64, 55 (1991).

    Article  CAS  Google Scholar 

  21. K. S. McGuire, D. R. Lloyd and G. B. A. Lim, J. Membrane Sci., 79, 27 (1993).

    Article  CAS  Google Scholar 

  22. S. S. Kim and D. R. Lloyd, Polymer, 33, 1026 (1992).

    CAS  Google Scholar 

  23. S. S. Kim and D. R. Lloyd, Polymer, 33, 1036 (1992).

    CAS  Google Scholar 

  24. S. S. Kim and D. R. Lloyd, Polymer, 33, 1047 (1992).

    CAS  Google Scholar 

  25. F.-J. Tsai and J. M. Torkelson, Macromolecules, 23, 775 (1990).

    CAS  Google Scholar 

  26. F.-J. Tsai and J. M. Torkelson, Macromolecules, 23, 4983 (1990).

    CAS  Google Scholar 

  27. S.-W. Song and J. M. Torkelson, J. Membrane Sci., 98, 209 (1995).

    Article  CAS  Google Scholar 

  28. W.-L. Chen, U.S. Pat. 5,342,567 (1994).

  29. M. Windholz (ed.), The Merck Index, 9th ed., Merck, Rahway, NJ, 1976.

    Google Scholar 

  30. M.-C. Yang and M.-T. Chou, J. Membrane Sci., 116, 279 (1996).

    Article  CAS  Google Scholar 

  31. B. K. Ratanam and A. K. Gupta, in Polymer Science, Contemporary Themes, S. Sivaram (ed.), Vol. 2, New Delhi, 1991, pp. 516–520.

  32. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, London, 1991, Ch. VII.

    Google Scholar 

  33. J. Karger-Kocsis, Polypropylene Structure Blends and Composites, Vol. 1, Structure and Morphology, Chapman and Hall, London, Chapter 3, 1995, pp. 56–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. -C. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M.C., Perng, J.S. Effect of quenching temperature on the morphology and separation properties of polypropylene microporous tubular membranes via thermally induced phase separation. J Polym Res 5, 213–219 (1998). https://doi.org/10.1007/s10965-006-0059-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-0059-2

Keywords

Navigation