Skip to main content
Log in

Structure and drawability of gel films from formalization of high molecular weight poly(vinyl alcohol) aqueous solution

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the structure and drawability of dried formalized gel films prepared from the formalization of high molecular weight polyvinyl alcohol (PVA) aqueous solutions were studied. Structure changes in PVA crystal were found in the formalized samples, i.e., the spacing of the (100) plane for PVA crystal became much larger while that of the (020) plane became smaller, indicating that some disordered crystals were formed from formalized PVA chains. The crystal relaxation temperature, Tαc, and its dependence on the draw ratio in formalized films were lower than those in original the PVA. Irrespective of the lower crystalline properties and the crystal relaxation temperature, the drawability of formalized PVA films could not be improved. The crystal orientation function, fc, decreased as the degree of formalization at a given draw ratio was increased, indicating that the acetal groups in the amorphous region must be a hindrance to the drawing of the formalized PVA. These results implied that the drawability of PVA is not only related to the properties of the crystalline region but also to those of the amorphous region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tashiro, M. Kobayashi and H. Tadokoro, Macromolecules, 11, 908 (1981).

    Google Scholar 

  2. P. Smith and P. J. Lemstra, J. Mater. Sci., 15, 505 (1980); Colloid Polym. Sci., 258, 891 (1980).

    CAS  Google Scholar 

  3. I. M. Ward, Structure and Properties of Oriented Polymers, Applied Science Publishers, London, 1975.

    Google Scholar 

  4. I. M. Ward, Developments in Oriented Polymer, Vol. 1,2, Elsevier Applied Science, London, 1987.

    Google Scholar 

  5. A. Ciferri and I. M. Ward, Ultra-High Modulus Polymers, Applied Science Publishers, London, 1979.

    Google Scholar 

  6. A. E. Zachariader and R. S. Porter, High Modulus Polymers Marcell Dekker, New York, 1988.

    Google Scholar 

  7. P. Cebe and D. Grubb, J. Mater. Sci., 20, 4465 (1985).

    Article  CAS  Google Scholar 

  8. S. Kavesh, D. C. Prevorsek and Y. D. Kown, U. S. Pat. 4,440,711 (1984).

  9. P. D. Garrett and D. T. Grubb, Polym. Cumm., 29, 60 (1988).

    CAS  Google Scholar 

  10. H. Fujiwara, M. Shibayama, J. H. Chen and S. Nomura, J. Appl. Polym. Sci., 37, 1403 (1989).

    Article  CAS  Google Scholar 

  11. O. Saito, ACM Symposium, Japan, No. 3, pp. 17, 1990.

    Google Scholar 

  12. M. Lee and K. Miyasaka, Sen-I Gakkaishi, 46, 263 (1991).

    Google Scholar 

  13. S. Mochizuki, Japan Patent Publication, 33, 316 (1990).

    Google Scholar 

  14. H. Kawase, O. Morimoto and T. Mochizuki, Kogyokagaku, 74, 1014 (1971).

    CAS  Google Scholar 

  15. Y. Ogata, M. Okano and T. Ganke, J. Am. Chem. Soc., 78, 1962 (1956).

    Google Scholar 

  16. P. D. Hong and K. Miyasaka, Polymer, 32, 3140 (1991).

    Article  CAS  Google Scholar 

  17. K. Shibatani, Y. Fujiwara and K. Fujii, J. Polym. Sci., 8, 1963 (1970).

    Google Scholar 

  18. J. F. Kenney and G. W. Willcockson, J. Polym. Sci., 4, 690 (1966).

    Google Scholar 

  19. C. W. Bunn, Nature, 161, 929 (1948).

    CAS  Google Scholar 

  20. P. Scherrer, Gottingen Nachr., 98 (1918).

  21. W. L. Bragg, R. James and W. Bosanget, Phil. M., 41, 309 (1921); ibid, 42, 1 (1921).

    CAS  Google Scholar 

  22. P. D. Hong and K. Miyasaka, Polymer, 35, 1369 (1994).

    Article  CAS  Google Scholar 

  23. H. Kawase, Kogyokagaku, 74, 218 (1971).

    Google Scholar 

  24. R. K. Tubb, J. Polym. Sci., 3, 4181 (1965).

    Google Scholar 

  25. P. D. Garrett and D. T. Grubb, J. Polym. Sci., Polym. Phys. Ed., 26, 2509 (1988).

    CAS  Google Scholar 

  26. I. Sakurada, Polyvinyl Alcohol Fibers, Dekker, New York, 1985.

    Google Scholar 

  27. H. Aoki and T. Suzuki, J. Polym. Sci., Polym. Chem. Ed., 26, 31 (1988).

    CAS  Google Scholar 

  28. D. T. Grubb and F. R. Kearney, J. Appl. Polym. Sci., 39, 695 (1990).

    Article  CAS  Google Scholar 

  29. R. Hosemann and S. N. Bagchi, Direct Analysis of Diffraction by Matter, North-Holland, Amsterdam, 1962.

    Google Scholar 

  30. B. E. Warren, Prog. Met. Phys., 8, 147 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, PD., Chen, JH. & Huang, HT. Structure and drawability of gel films from formalization of high molecular weight poly(vinyl alcohol) aqueous solution. J Polym Res 5, 15–22 (1998). https://doi.org/10.1007/s10965-006-0035-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-0035-x

Keywords

Navigation