Skip to main content
Log in

Direct and High Frequency Alternating Current Conduction Mechanisms in Solution Cast Polyaniline Films

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Frequency dependent (ac) and independent (dc) conductivity measurements have been carried out on polyaniline (PANI) films deposited by solution casting technique. Under low electric field (1 × 103 V/cm) condition, the dc conductivity measured in the temperature range of 173–303 K obeys the three-dimensional variable range hopping (3D VRH) formalism. The Mott parameters such as localization length (α−1 ≈ 7 Å), density of states [N(E F ) = 1.04 × 1019 states/eV cm3], hopping range (R hop = 60 Å) and hopping energy (W hop = 0.38 eV) are computed. The ac conductivity measured in the frequency range 10 kHz–5 MHz and in the temperature range 150–380 K follow a power-law dependence σ acω s, typical for charge transport by hopping or tunnelling processes. Therefore, the experimental results are analyzed with reference to various theoretical models based on quantum-mechanical tunnelling and classical hopping over barriers. The observed minimum in the temperature dependence of the frequency exponent s strongly suggests that tunnelling of large polarons is the dominant transport process. The polaron radius (r p ≈ 25 Å) and barrier height for infinite site separation (W HO ≈ 0.22 eV) are evaluated. The density of states [N(E F)] and tunnelling distances (R ω ) are estimated and discussed in terms of frequency and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PANI:

polyaniline

VRH:

variable range hopping

EB:

emeraldine base

XPS:

X-ray photoelectron spectroscopy

QMT:

quantum mechanical tunnelling

CBH:

correlated hopping over a barrier

OLPT:

overlapping large polaron tunnelling.

References

  1. W. R. Salaneck, I. Lundström and B. Ranby (Eds.), Conjugated Polymers and Related Materials – The Interconnection of Chemical and Electronic Structure, Oxford Univ. Press, Oxford, 1993.

  2. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd Edn., Oxford University Press, London, 1979.

    Google Scholar 

  3. A. R. Long, Adv. Phys., 31, 533 (1982).

    Article  Google Scholar 

  4. S. R. Elliott, Adv. Phys., 36, 135 (1987).

    Article  CAS  Google Scholar 

  5. F. Zuo, M. Angelopoulos, A. G. MacDiarmid and A. J. Epstein, Phys. Rev., B, 39, 3570 (1989).

    Article  CAS  Google Scholar 

  6. A. Raghunathan, G. Rangarajan and D. C. Trivedi, Synth. Met., 81, 39 (1996).

    Article  CAS  Google Scholar 

  7. H. H. S. Javadi, K. R. Cromack, A. G. MacDiarmid and A. J. Epstein, Phys. Rev., B, 39, 3579 (1989).

    Article  CAS  Google Scholar 

  8. Y. Wei, G. W. Jang, K. F. Hsueh, E. Scherr, A. G. MacDiarmid and A. J. Epstein, Polymer, 33, 314 (1992).

    Article  CAS  Google Scholar 

  9. T. Prakash, Sa.K. Narayandass and K. Prem Nazeer, Bull. Mater. Sci., 25, 521 (2002).

    Article  CAS  Google Scholar 

  10. M. Trchova, J. Stejskal and J. Prokes, Synth. Met., 101, 840 (1999).

    Article  CAS  Google Scholar 

  11. J. Stejskal and R. G. Gilbert, Pure Appl. Chem., 74(5), 857 (2002).

    Article  CAS  Google Scholar 

  12. M. Ghosh, A. Barman, S. K. De and S. Chatterjee, Synth. Met., 97, 23 (1998).

    Article  CAS  Google Scholar 

  13. V. Ambegaskar, B. I. Halperin and J. S. Langer, Phys. Rev., 34, 2612 (1972).

    Google Scholar 

  14. R. P. Sharma, A. K. Shukla, A. K. Kapoor, R. Srivastava and P. C. Mathur, J. Appl. Phys., 57(6), 2026 (1985).

    Article  CAS  Google Scholar 

  15. A. N. Papathanassiou, I. Sakellis, J. Grammatikakis, S. Sakkopoulos, E. Vitoratos and E. Dalas, Solid State Commun., 125, 95 (2003).

    Article  CAS  Google Scholar 

  16. R. Singh and A. K. Narula, J. Appl. Phys., 82(9), 4362 (1997).

    Article  CAS  Google Scholar 

  17. P. K. Kahol, R. P. Perera, K. K. Satheesh Kumar, S. Geetha and D. C. Trivedi, Solid State Commun., 125, 369 (2003).

    Article  CAS  Google Scholar 

  18. S. R. Elliott, Philos. Mag., B, 37, 553 (1978).

    Article  CAS  Google Scholar 

  19. I. G. Austin and N. F. Mott, Adv. Phys., 18, 41 (1969).

    Article  CAS  Google Scholar 

  20. M. Pollak, Phys. Rev., 138, A1822 (1965).

    Article  Google Scholar 

  21. S. Bhattacharyya, S. K. Saha and D. Chakravorty, J. Polym. Sci., B, Polym. Phys., 38, 1193 (2000).

    Article  CAS  Google Scholar 

  22. N. J. Pinto, G. P. Sinha and F. M. Aliev, Synth. Met., 94, 199 (1998).

    Article  CAS  Google Scholar 

  23. F. L. Pratt, S. J. Blundell, W. Hayes, K. Nagamine, K. Ishida and A. P. Monkman, Phys. Rev. Lett., 79, 2855 (1997).

    Article  CAS  Google Scholar 

  24. R. Singh, A. K. Narula, R. P. Tandon, A. Mansingh and S. Chandra, Philos. Mag., B, 75, 419 (1997).

    Article  CAS  Google Scholar 

  25. S. R. Elliott, Philos. Mag., 36, 1291 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mangalaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prem Nazeer, K., Thamilselvan, M., Mangalaraj, D. et al. Direct and High Frequency Alternating Current Conduction Mechanisms in Solution Cast Polyaniline Films. J Polym Res 13, 17–23 (2006). https://doi.org/10.1007/s10965-005-9007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-005-9007-9

Key words

Navigation