Journal of Polymer Research

, Volume 11, Issue 4, pp 265–268 | Cite as

Mechanistic study on Sn(Oct)2-catalyzed, ring-opening polymerization of p-dioxanone by surface-initiated polymerization and x-ray photoelectron spectroscopy

  • Kuk Ro Yoon
  • Yongseong Kim
  • Insung S. Choi


Two mechanisms on Sn(Oct)2-catalyzed, ring-opening polymerization of p-dioxanone (PDX) were mainly proposed: activated monomer mechanism and coordination-insertion mechanism. The activated monomer mechanism assumes that alcohol complexed with Sn(Oct)2 reacts with monomer and forms a ternary complex. The initiation and chain growth then proceeds within the complex with liberation of the intact Sn(Oct)2. In contrast, the coordination-insertion mechanism hypothesizes that an actual initiator is the -Sn(OR) species and the polymerization proceeds on the -Sn-O-polymer. In this paper, to investigate the presence/absence of the Sn species in the PPDX chain, we used X-ray photoelectron spectroscopy (XPS) of poly(p-dioxanone) (PPDX) grown from a gold surface using the “grafting-from” approach, and the XPS data supports the coordination-insertion mechanism. After the polymerization of PPDX from the surface, the peaks from Sn were observed at 153, 486, and 495 eV in XPS spectrum, and the peaks disappeared after quenching with 1N HCl.

Key words

activated monomer mechanism coordination-insertion mechanism poly(p-dioxanone) (PPDX) ring-opening polymerization surface-initiated polymerization X-ray photoelectron spectroscopy (XPS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Nishida, M. Yamashita, T. Endo and Y. Tokiwa, Macromolecules, 33, 6982 (2000).Google Scholar
  2. 2.
    H. S. Schultz, U.S. Pat. 3,063,967.Google Scholar
  3. 3.
    J. M. Bagget, J. W. Horvath and B. W.Wilson, U.S. Pat. 3,391,126.Google Scholar
  4. 4.
    T. F. Al-Azemi and K. S. Bisht, Macromolecules, 32, 6536 (1999).Google Scholar
  5. 5.
    H. Nishida, M. Yamashita, M. Nagashima, T. Endo and Y. J. Tokiwa, Polym. Sci., Part A: Polym. Chem., 38, 1560 (2000).Google Scholar
  6. 6.
    K. K. Yang, X. L. Wang and Y. Z. Wang, J. Macromol. Sci. Polym. Rev., 42, 373 (2002).Google Scholar
  7. 7.
    H. L. Lin, C. C. Chu and D. Grubb, J. Biomed. Mater. Res., 27, 153 (1993), and references therein.Google Scholar
  8. 8.
    N. Doddi, C. C. Versfelt and D. Wasserman, U.S. Pat. 4,032,988.Google Scholar
  9. 9.
    H. von Schenck, M. Ryner, A. C. Albertsson and M. Svensson, Macromolecules, 35, 1556 (2002).Google Scholar
  10. 10.
    M. Ryner, K. Stridsberg, A. C. Albertsson, H. von Schenck and M. Svensson, Macromolecules, 34, 3877 (2001).Google Scholar
  11. 11.
    A. Kowalski, A. Duda and S. Penczek, Macromolecules, 33, 7359 (2000).Google Scholar
  12. 12.
    A. Kowalski, J. Libiszowski, A. Duda and S. Penczek, Macromolecules, 33, 1964 (2000).Google Scholar
  13. 13.
    C. Pale-Grosdemange, E. S. Simon, K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc., 113, 12 (1991).Google Scholar
  14. 14.
    H. R. Guest and B. W. Kiff, U.S. Pat. 2,900,395.Google Scholar
  15. 15.
    K. R. Yoon, K. B. Lee, Y. S. Chi, D. J. Kim, Y. J. Koh, S. W. Joo, W. S. Yun and I. S. Choi, J. Mater. Chem., 13, 2910 (2003).Google Scholar
  16. 16.
    K. R. Yoon and I. S. Choi, Adv. Mater., 15, 2063 (2003).Google Scholar
  17. 17.
    K. R. Yoon, Y. J. Koh and I. S. Choi, Macromol. Rapid Commun., 24, 207 (2003).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Division of Chemistry and Chemical EngineeringKyungnam UniversityMasan, GyeongnamKorea

Personalised recommendations