Journal of Polymer Research

, Volume 11, Issue 4, pp 265–268

Mechanistic study on Sn(Oct)2-catalyzed, ring-opening polymerization of p-dioxanone by surface-initiated polymerization and x-ray photoelectron spectroscopy


DOI: 10.1007/s10965-005-2409-x

Cite this article as:
Yoon, K.R., Kim, Y. & Choi, I.S. J Polym Res (2005) 11: 265. doi:10.1007/s10965-005-2409-x


Two mechanisms on Sn(Oct)2-catalyzed, ring-opening polymerization of p-dioxanone (PDX) were mainly proposed: activated monomer mechanism and coordination-insertion mechanism. The activated monomer mechanism assumes that alcohol complexed with Sn(Oct)2 reacts with monomer and forms a ternary complex. The initiation and chain growth then proceeds within the complex with liberation of the intact Sn(Oct)2. In contrast, the coordination-insertion mechanism hypothesizes that an actual initiator is the -Sn(OR) species and the polymerization proceeds on the -Sn-O-polymer. In this paper, to investigate the presence/absence of the Sn species in the PPDX chain, we used X-ray photoelectron spectroscopy (XPS) of poly(p-dioxanone) (PPDX) grown from a gold surface using the “grafting-from” approach, and the XPS data supports the coordination-insertion mechanism. After the polymerization of PPDX from the surface, the peaks from Sn were observed at 153, 486, and 495 eV in XPS spectrum, and the peaks disappeared after quenching with 1N HCl.

Key words

activated monomer mechanism coordination-insertion mechanism poly(p-dioxanone) (PPDX) ring-opening polymerization surface-initiated polymerization X-ray photoelectron spectroscopy (XPS) 

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Division of Chemistry and Chemical EngineeringKyungnam UniversityMasan, GyeongnamKorea

Personalised recommendations