Skip to main content
Log in

A Reptation-Based Lattice Model with Tube-Chain Coupling for the Linear Dynamics of Bidisperse Entangled Linear Polymer

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A reptation-based lattice model for simulating the linear dynamics of entangled linear polymers that accounts for an essential coupling in tube-chain motions during constraint release is proposed. The predictions are tested against a representative set of dynamic oscillatory data on bidisperse polybudadiene (PBd) melts. The special feature of the current model lies in that the motion of the primitive chain coincides exactly with that of the ‘tube,’ so that it is possible to mimic the longitudinal relaxation that is cooperative with the lateral one (i.e., double reptation) during constraint release. The simulation is shown to capture the central feature of constraint release for the investigated system without demanding factorizability for the stress relaxation function, as usually enforced in existing tube theories. Furthermore, the simulation suggests that the longitudinal chain relaxation currently incorporated might account for an important partition of stress relaxation that had customarily been attributed to the effect of double reptation or similar tube motions alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes, J. Chem. Phys., 55, 572 (1971).

    Article  Google Scholar 

  2. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.

    Google Scholar 

  3. C. Tsenoglou, Polym. Prepr. (Amer. Chem. Soc. Div. Polym. Chem.), 28, 185 (1987).

    Google Scholar 

  4. J. des Cloizeaux, Europhys. Lett., 5, 437 (1988).

    Google Scholar 

  5. M. J. Struglinski and W. Graessley, Macromolecules, 18, 2630 (1985).

    Article  Google Scholar 

  6. M. Rubinstein and R. H. Colby, J. Chem. Phys., 89, 5291 (1988).

    Article  Google Scholar 

  7. J. des Cloizeaux, Macromolecules, 23, 4678 (1990).

    Article  Google Scholar 

  8. A. L. Frischknecht and S. T. Milner, J. Rheol., 46, 671 (2002).

    Article  Google Scholar 

  9. S. T. Milner, J. Rheol., 40, 303 (1996).

    Article  Google Scholar 

  10. P. G. de Gennes, J. Phys. (Paris), 36, 1199 (1975).

    Google Scholar 

  11. A. E. Likhman and T. C. B. McLeish, Macromolecules, 35, 6332 (2002).

    Article  Google Scholar 

  12. C. C. Hua and J. D. Schieber, J. Chem. Phys., 109, 10018 (1998).

    Article  Google Scholar 

  13. J. Takimoto, H. Tasaki and M. Doi, in Proceedings of the 13th International Congress on Rheology, Vol. 2, British Society of Rheology, Glasgow, 2000, p. 97.

    Google Scholar 

  14. H. Watanabe, O. Urakawa and T. Kotaka, Macromolecules, 27, 3525 (1994).

    Article  Google Scholar 

  15. D. W. Mead, J. Rheol., 40, 633 (1996).

    Article  Google Scholar 

  16. C. C. Hua and H. Y. Kuo, J. Polym. Sci. Polym. Phys., 38, 248 (2000).

    Article  Google Scholar 

  17. G. Marrucci, F. Greco and G. Ianniruberto, Macromol. Symp., 158, 57 (2000).

    Article  Google Scholar 

  18. D. C. Venerus and H. Kahvand, J. Polym. Sci. Polym. Phys., 32, 1531 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi C. Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, C.C., Ke, C.C. A Reptation-Based Lattice Model with Tube-Chain Coupling for the Linear Dynamics of Bidisperse Entangled Linear Polymer. J Polym Res 12, 181–187 (2005). https://doi.org/10.1007/s10965-004-1866-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-004-1866-y

Keywords

Navigation