Individual Attitudes toward Deviant Behavior and Perceived Attitudes of Friends: Self-stereotyping and Social Projection in Adolescence and Emerging Adulthood

Abstract

The transmission of attitudes toward deviant behavior occurs in social contexts such as peer groups. Accordingly, individuals align their attitudes to those of friends because they want to belong to that social category or, conversely, individual attitudes influence the perception of peer attitudes. Hence, individuals self-stereotype themselves as being members of a peer group or they project their attitudes onto friends. However, it is unclear which process—self-stereotyping or social projection—is predominant in determining similarity of individual and peer attitudes toward deviant behavior. Furthermore, it is unclear whether predominance changes between early/middle adolescence and emerging adulthood. These gaps are examined with panel data on individual attitudes toward deviant behavior and perceived attitudes of individuals’ friends from a German study covering ages 14 to 20 (N = 3723; proportion of male respondents across panel waves ranges between 42 and 49%). A random intercepts cross-lagged panel model is applied to the data to estimate within-person effects in both directions, which allows to answer whether self-stereotyping or social projection is predominant and whether predominance changes across time. The results indicate that self-stereotyping is active almost entirely in adolescence and emerging adulthood. Reversed effects only occur during the transition from adolescence to emerging adulthood, signaling a developmental shift toward social projection. Thus, the influence of perceived peer attitudes toward deviant behavior on individual attitudes decreases in the phase in which adolescents develop into young adults. At the same time, individuals’ own attitudes become increasingly influential for making inferences about the attitudes of their peers.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    For this purpose, respondents had to recall a self-generated code across time. This method was used to ensure the greatest extent of anonymity. However, the ability of respondents to memorize their individual code correctly is distributed differently, for example across gender.

  2. 2.

    A description of the German educational system with its different school types is given by the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany (2017).

  3. 3.

    Ethnicity was inferred from parents’ country of origin (asked at age 14). For example, the proportion of respondents holding German citizenship is much higher (86% at age 20).

  4. 4.

    Descriptive information on the 140 items (10 items per construct across 7 panel waves) can be requested from the author.

  5. 5.

    In the current analysis, the units are individuals. However, in other research contexts units may refer to other entities such as companies, countries, cultures, or groups.

  6. 6.

    The terms factor and construct are used interchangeably in this context.

  7. 7.

    All chi-squares reported in this study refer to the test statistic of Yuan and Bentler (2000). Chi-square difference tests refer to the method proposed by Satorra and Bentler (2010).

References

  1. Akers, R. L. (2009). Social learning and social structure. A general theory of crime and deviance. New Brunswick, NJ: Transaction Publishers.

    Google Scholar 

  2. Allison, P. D., Williams, R., & Moral-Benito, E. (2017). Maximum likelihood for cross-lagged panel models with fixed effects. Socius, 3, 1–17. https://doi.org/10.1177/2378023117710578.

    Article  Google Scholar 

  3. Ames, D. R., Weber, E. U., & Zou, X. (2012). Mind-reading in strategic interaction: the impact of perceived similarity on projection and stereotyping. Organizational Behavior and Human Decision Processes, 117, 96–110. https://doi.org/10.1016/j.obhdp.2011.07.007.

    Article  Google Scholar 

  4. Arnett, J. J. (2007). Emerging adulthood: what is it, and what is it good for? Child Development Perspectives, 1, 68–73. https://doi.org/10.1111/j.1750-8606.2007.00016.x.

    Article  Google Scholar 

  5. Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross‐lagged panel models: rethinking a developmental workhorse. Child Development, 88, 1186–1206. https://doi.org/10.1111/cdev.12660.

    Article  PubMed  Google Scholar 

  6. Brown, B. B. (2004). Adolescents’ relationships with peers. In R. M. Lerner & L. Steinberg (Eds.), Handbook of adolescent psychology (pp. 363–394). Hoboken, NJ, US: John Wiley & Sons Inc.

    Google Scholar 

  7. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford Press.

    Google Scholar 

  8. Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464–504. https://doi.org/10.1080/10705510701301834.

    Article  Google Scholar 

  9. Clement, R. W., & Krueger, J. (2000). The primacy of self-referent information in perceptions of social consensus. British Journal of Social Psychology, 39, 279–299. https://doi.org/10.1348/014466600164471.

    Article  PubMed  Google Scholar 

  10. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577. https://doi.org/10.1037/0021-843X.112.4.558.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dormann, C., & Griffin, M. A. (2015). Optimal time lags in panel studies. Psychological Methods, 20, 489–505. https://doi.org/10.1037/met0000041.

    Article  PubMed  Google Scholar 

  12. Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: a practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105, 399–412. https://doi.org/10.1111/bjop.12046.

    Article  PubMed  Google Scholar 

  13. Eagly, A. H., & Chaiken, S. (2007). The advantages of an inclusive definition of attitude. Social Cognition, 25, 582–602. https://doi.org/10.1521/soco.2007.25.5.582.

    Article  Google Scholar 

  14. Finney, S. J., & Di Stefano, C. (2013). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: a second course (pp. 439–492). Charlotte, NC: Information Age.

    Google Scholar 

  15. Fishbein, M., & Ajzen, I. (2010). Predicting and changing behavior: the reasoned action approach. New York, NY: Psychology Press. https://doi.org/10.4324/9780203838020.

    Book  Google Scholar 

  16. Gallupe, O., McLevey, J., & Brown, S. (2019). Selection and influence: a meta-analysis of the association between peer and personal offending. Journal of Quantitative Criminology, 35, 313–335. https://doi.org/10.1007/s10940-018-9384-y.

    Article  Google Scholar 

  17. Hamaker, E. L. (2018). How to run a multiple indicator RI-CLPM with Mplus. https://www.statmodel.com/download/RI-CLPM.pdf.

  18. Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20, 102–116. https://doi.org/10.1037/a0038889.

    Article  PubMed  Google Scholar 

  19. Haynie, D. L., & Osgood, D. W. (2005). Reconsidering peers and delinquency: how do peers matter? Social Forces, 84, 1109–1130. https://doi.org/10.1353/sof.2006.0018.

    Article  Google Scholar 

  20. Hogg, M. A., & Smith, J. R. (2007). Attitudes in social context: a social identity perspective. European Review of Social Psychology, 18, 89–131. https://doi.org/10.1080/10463280701592070.

    Article  Google Scholar 

  21. Jennings, W. G., & Reingle, J. M. (2012). On the number and shape of developmental/life-course violence, aggression, and delinquency trajectories: a state-of-the-art review. Journal of Criminal Justice, 40, 472–489. https://doi.org/10.1016/j.jcrimjus.2012.07.001.

    Article  Google Scholar 

  22. Krueger, J. I. (2007). From social projection to social behaviour. European Review of Social Psychology, 18, 1–35. https://doi.org/10.1080/10463280701284645.

    Article  Google Scholar 

  23. Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: re-considering the role of the time-interval. Structural Equation Modeling, 25, 809–823. https://doi.org/10.1080/10705511.2018.1431046.

    Article  Google Scholar 

  24. Locke, K. D., Craig, T., Baik, K.-D., & Gohil, K. (2012). Binds and bounds of communion: effects of interpersonal values on assumed similarity of self and others. Journal of Personality and Social Psychology, 103, 879–897. https://doi.org/10.1037/a0029422.

    Article  PubMed  Google Scholar 

  25. Loeber, R., & Farrington, D. P. (2014). Age-crime curve. In G. Bruinsma & D. Weisburd (Eds.), Encyclopedia of criminology and criminal justice (pp. 12–18). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-5690-2_474.

    Google Scholar 

  26. Machunsky, M., Toma, C., Yzerbyt, V., & Corneille, O. (2014). Social projection increases for positive targets: ascertaining the effect and exploring its antecedents. Personality & Social Psychology Bulletin, 40, 1373–1388. https://doi.org/10.1177/0146167214545039.

    Article  Google Scholar 

  27. Maio, G. R., & Haddock, G. (2010). The psychology of attitudes and attitude change. London: Sage.

    Google Scholar 

  28. Marsh, H. W., & Grayson, D. (1994). Longitudinal confirmatory factor analysis: common, time‐specific, item‐specific, and residual‐error components of variance. Structural Equation Modeling, 1, 116–145. https://doi.org/10.1080/10705519409539968.

    Article  Google Scholar 

  29. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: homophily in social networks. Annual Review of Sociology, 27, 415–444. https://doi.org/10.1146/annurev.soc.27.1.415.

    Article  Google Scholar 

  30. Megens, K. C. I. M., & Weerman, F. M. (2012). The social transmission of delinquency: effects of peer attitudes and behavior revisited. Journal of Research in Crime and Delinquency, 49, 420–443. https://doi.org/10.1177/0022427811408432.

    Article  Google Scholar 

  31. Moffitt, T. E. (2018). Male antisocial behaviour in adolescence and beyond. Nature Human Behaviour, 2, 177–186. https://doi.org/10.1038/s41562-018-0309-4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muthén, L., & Muthén, B. O. (1998–2017). Mplus user’s guide, 8th edition. Los Angeles: Muthén & Muthén.

  33. Muthén, B. O., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. https://www.statmodel.com/download/Article_075.pdf.

  34. Muthén, B. O., Muthén, L., & Asparouhov, T. (2015). Estimator choices with categorical outcomes. https://www.statmodel.com/download/EstimatorChoices.pdf.

  35. Onorato, R. S., & Turner, J. C. (2004). Fluidity in the self-concept: the shift from personal to social identity. European Journal of Social Psychology, 34, 257–278. https://doi.org/10.1002/ejsp.195.

    Article  Google Scholar 

  36. Painter, K. A., & Farrington, D. P. (2004). Gender differences in crime. Criminal Justice Matters, 55, 6–7. https://doi.org/10.1080/09627250408553584.

    Article  Google Scholar 

  37. Pardini, D. A., Loeber, R., & Stouthamer-Loeber, M. (2005). Developmental shifts in parent and peer influences on boys’ beliefs about delinquent behavior. Journal of Research on Adolescence, 15, 299–323. https://doi.org/10.1111/j.1532-7795.2005.00098.x.

    Article  Google Scholar 

  38. Petrocelli, J. V., Tormala, Z. L., & Rucker, D. D. (2007). Unpacking attitude certainty: attitude clarity and attitude correctness. Journal of Personality and Social Psychology, 92, 30–41. https://doi.org/10.1037/0022-3514.92.1.30.

    Article  PubMed  Google Scholar 

  39. Pratt, T. C., & Cullen, F. T. (2000). The empirical status of Gottfredson and Hirschi’s general theory of crime: a meta-analysis. Criminology, 38, 931–964. https://doi.org/10.1111/j.1745-9125.2000.tb00911.x.

    Article  Google Scholar 

  40. Preacher, K. J. (2006). Quantifying parsimony in structural equation modeling. Multivariate Behavioral Research, 41, 227–259. https://doi.org/10.1207/s15327906mbr4103_1.

    Article  PubMed  Google Scholar 

  41. Prislin, R., & Wood, W. (2005). Social influence in attitudes and attitude change. In D. Albarracín, B. T. Johnson & M. P. Zanna (Eds.), The handbook of attitudes (pp. 671–705). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  42. Rebellon, C. J. (2012). Differential association and substance use: assessing the roles of discriminant validity, socialization, and selection in traditional empirical tests. European Journal of Criminology, 9, 73–96. https://doi.org/10.1177/1477370811421647.

    Article  Google Scholar 

  43. Reicher, S. D., Haslam, S. A., Spears, R., & Reynolds, K. J. (2012). A social mind: the context of John Turner’s work and its influence. European Review of Social Psychology, 23, 344–385. https://doi.org/10.1080/10463283.2012.745672.

    Article  Google Scholar 

  44. Reinecke, J. (2013). Growth curve models and panel dropouts: applications with criminological panel data. Netherlands Journal of Psychology, 67, 122–131.

    Google Scholar 

  45. Reinecke, J., & Weins, C. (2013). The development of delinquency during adolescence: a comparison of missing data techniques. Quality & Quantity, 47, 3319–3334. https://doi.org/10.1007/s11135-012-9721-4.

    Article  Google Scholar 

  46. Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354–373. https://doi.org/10.1037/a0029315.

    Article  PubMed  Google Scholar 

  47. Robbins, J. M., & Krueger, J. I. (2005). Social projection to ingroups and outgroups: a review and meta-analysis. Personality and Social Psychology Review, 9, 32–47. https://doi.org/10.1207/s15327957pspr0901_3.

    Article  PubMed  Google Scholar 

  48. Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75, 243–248. https://doi.org/10.1007/s11336-009-9135-y.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7, 147–177. https://doi.org/10.1037/1082-989X.7.2.147.

    Article  PubMed  Google Scholar 

  50. Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany (2017). The education system in the Federal Republic of Germany 2015/2016. Bonn, Germany: Secretariat of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany. Retrieved from https://www.kmk.org/fileadmin/Dateien/pdf/Eurydice/Bildungswesen-engl-pdfs/dossier_en_ebook.pdf.

  51. Seddig, D., & Davidov, E. (2018). Values, attitudes toward interpersonal violence, and interpersonal violent behavior. Frontiers in Psychology, 9, 604 https://doi.org/10.3389/fpsyg.2018.00604.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Seddig, D., & Reinecke, J. (2017). Exploration and explanation of adolescent self-reported delinquency trajectories in the Crimoc study. In A. Blokland & V. van der Geest (Eds.), The Routledge international handbook of life-course criminolgy (pp. 159–178). London: Taylor & Francis.

    Google Scholar 

  53. Selig, J. P., & Little, T. D. (2012). Autoregressive and cross-lagged panel analysis for longitudinal data. In B. Laursen, T. D. Little & N. A. Card (Eds.), Handbook of developmental research methods (pp. 265–278). New York, NY: The Guilford Press.

    Google Scholar 

  54. Serafim, A. D. P., de Barros, D. M., Castellana, G. B., & Gorenstein, C. (2014). Personality traits and violent behavior: a comparison between psychopathic and non-psychopathic male murderers. Psychiatry Research, 219, 604–608. https://doi.org/10.1016/j.psychres.2014.06.026.

    Article  Google Scholar 

  55. Shavitt, S., & Nelson, M. (2002). The role of attitude functions in persuasion and social judgment. In J.P. Dillard & M. Pfau, The persuasion handbook: developments in theory and practice (pp. 137–154). Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781412976046.n8.

  56. Sheldon, K. M. (2005). Positive value change during college: normative trends and individual differences. Journal of Research in Personality, 39, 209–223. https://doi.org/10.1016/j.jrp.2004.02.002.

    Article  Google Scholar 

  57. Sijtsema, J. J., & Lindenberg, S. M. (2018). Peer influence in the development of adolescent antisocial behavior: advances from dynamic social network studies. Developmental Review, 50, 140–154. https://doi.org/10.1016/j.dr.2018.08.002.

    Article  Google Scholar 

  58. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78–106. https://doi.org/10.1016/j.dr.2007.08.002.

    Article  PubMed  Google Scholar 

  59. Steinberg, L., & Monahan, K. C. (2007). Age differences in resistance to peer influence. Developmental Psychology, 43, 1531–1543. https://doi.org/10.1037/0012-1649.43.6.1531.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Terry, D. J., Hogg, M. A., & White, K. M. (2000). Attitude–behavior relations: social identity and group membership. In D. J. Terry & M. A. Hogg (Eds.), Applied social research. Attitudes, behavior, and social context: The role of norms and group membership (pp. 67–93). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  61. Thurner, F. (2018). Social projection vs. self-stereotyping: the role of socio-cognitive mindsets in the activation of cognitive inferential processes. University of Mannheim, Mannheim. Retrieved from https://madoc.bib.uni-mannheim.de/46239/1/Dissertation_Thurner.pdf.

  62. Tormala, Z. L., & Rucker, D. D. (2018). Attitude certainty: antecedents, consequences, and new directions. Consumer Psychology Review, 1, 72–89. https://doi.org/10.1002/arcp.1004.

    Article  Google Scholar 

  63. Turner, J., & Reynolds, K. (2012). Self-categorization theory. In P. A. Van Lange, A. W. Kruglanski & E. T. Higgins (Eds.), Handbook of theories of social psychology (vol. 2, pp. 399–417). London: Sage Publications. https://doi.org/10.4135/9781446249222.n46.

  64. van Veelen, R., Otten, S., Cadinu, M., & Hansen, N. (2016). An integrative model of social identification: self-stereotyping and self-anchoring as two cognitive pathways. Personality and Social Psychology Review, 20, 3–26. https://doi.org/10.1177/1088868315576642.

    Article  PubMed  Google Scholar 

  65. Vecchione, M., Schwartz, S., Alessandri, G., Döring, A. K., Castellani, V., & Caprara, M. G. (2016). Stability and change of basic personal values in early adulthood: an 8-year longitudinal study. Journal of Research in Personality, 63, 111–122. https://doi.org/10.1016/j.jrp.2016.06.002.

    Article  Google Scholar 

  66. Visser, P. S., & Krosnick, J. A. (1998). Development of attitude strength over the life cycle: surge and decline. Journal of Personality and Social Psychology, 75, 1389–1410. https://doi.org/10.1037/0022-3514.75.6.1389.

    Article  PubMed  Google Scholar 

  67. Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2019). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2018.1496813.

    Article  Google Scholar 

  68. Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: relating authoritarianism and anomia. Psychological Methods, 17, 176–192. https://doi.org/10.1037/a0027543.

    Article  PubMed  Google Scholar 

  69. Weerman, F. M. (2004). The changing role of delinquent peers in childhood and adolescence: issues, findings and puzzles. In G. J. N. Bruinsma, H. Elffers, & J. de Keijser (Eds.), Punishment, places and perpetrators. Developments in criminology and criminal justice research, (pp. 279–297). Devon: Willan Publishing.

  70. Weerman, F. M., & Smeenk, W. H. (2005). Peer similarity in delinquency for different types of friends: a comparison using two measurement methods. Criminology, 43, 499–524. https://doi.org/10.1111/j.0011-1348.2005.00015.x.

    Article  Google Scholar 

  71. Weerman, F. M., Wilcox, P., & Sullivan, C. J. (2018). The short-term dynamics of peers and delinquent behavior: an analysis of bi-weekly changes within a high school student network. Journal of Quantitative Criminology, 34, 431–463. https://doi.org/10.1007/s10940-017-9340-2.

    Article  PubMed  Google Scholar 

  72. West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 209–231). New York, NY: The Guilford Press.

    Google Scholar 

  73. Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: measuring the same construct across time. Child Development Perspectives, 4, 10–18. https://doi.org/10.1111/j.1750-8606.2009.00110.x.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Young, J. T. N., Rebellon, C. J., Barnes, J. C., & Weerman, F. M. (2015). What do alternative measures of peer behavior tell us? Examining the discriminant validity of multiple methods of measuring peer Deviance and the implications for etiological models. Justice Quarterly, 32, 626–652. https://doi.org/10.1080/07418825.2013.788730.

    Article  Google Scholar 

  75. Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In M. E. Sobel & P. Mark (Eds.), Sociological methodology 2000 (pp. 165–200). Washington, DC: ASA.

  76. Zhang, Q., Loeber, R., & Stouthamer-Loeber, M. (1997). Developmental trends of delinquent attitudes and behaviors: replications and synthesis across domains, time, and samples. Journal of Quantitative Criminology, 13, 181–215. https://doi.org/10.1007/BF02221307.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Klaus Boers and Professor Jost Reinecke for granting access to the data and Lisa Trierweiler for the English proof of the manuscript.

Data Sharing and Declaration

Syntaxes and descriptive statistics are available from the corresponding author on request. The data can be requested contacting the principal investigators of the Crimoc project (www.crimoc.org).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Seddig.

Ethics declarations

Conflict of Interest

The author declare that he has no conflict of interest.

Ethical Standards

The German Research Foundation (DFG), funding organization of the Crimoc study, obliges project participants to adhere to “Safeguarding Good Scientific Practice”.

Informed Consent

For surveys in schools, school principals agreed that their school participated. Participants and their parents provided the informed consent before first participation in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table A4 Conventional cross-lagged panel model estimates (N = 3723)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seddig, D. Individual Attitudes toward Deviant Behavior and Perceived Attitudes of Friends: Self-stereotyping and Social Projection in Adolescence and Emerging Adulthood. J Youth Adolescence 49, 664–677 (2020). https://doi.org/10.1007/s10964-019-01123-x

Download citation

Keywords

  • Adolescence and emerging adulthood
  • Attitudes toward deviance
  • Peers
  • Self-stereotyping
  • Social projection
  • Panel data