Pathways of Intergenerational Transmission of Advantages during Adolescence: Social Background, Cognitive Ability, and Educational Attainment

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Educational attainment in adolescence is of paramount importance for attaining higher education and for shaping subsequent life chances. Sociological accounts focus on the role of differences in socioeconomic resources in intergenerational reproduction of educational inequalities. These often disregard the intergenerational transmission of cognitive ability and the importance of children’s cognitive ability to educational attainment. Psychological perspectives stress the importance of cognitive ability for educational attainment but underemphasize potentially different roles of specific socioeconomic resources in shaping educational outcomes, as well as individual differences in cognitive ability. By integrating two strands of research, a clearer picture of the pathways linking the family of origin, cognitive ability, and early educational outcomes can be reached. Using the population-based TwinLife study in Germany, we investigated multidimensional pathways linking parental socioeconomic position to their children’s cognitive ability and academic track attendance in the secondary school. The sample included twins (N = 4008), respectively ages 11 and 17, and siblings (N = 801). We observed strong genetic influences on cognitive ability, whereas shared environmental influences were much more important for academic tracking. In multilevel analyses, separate dimensions of socioeconomic resources influenced child cognitive ability, controlling parental cognitive ability. Controlling adolescent cognitive ability and parental cognitive ability, parental socioeconomic resources also directly affected track attendance. This indicated that it is crucial to investigate the intertwined influences on educational outcomes in adolescence of both cognitive ability and the characteristics of the family of origin.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    In addition to the covariates used in the multivariate analyses, we also used information on the interviewers (age, sex, and tenure with the survey institute), information provided by the interviewer regarding the dwelling, household and family size and composition, region, and community size to generate the imputations.

  2. 2.

    Covariances and interactions among the components are assumed to be zero. This assumption, however, is often violated, perhaps especially in associations among cognitive ability and education and social attainment measures.

  3. 3.

    In our sample the correlation between both parents’ CFT was about 0.4 and between both parents’ secondary schooling (binary variable, indicating if a higher secondary track was completed) was about 0.6. Assuming that in general \(\sigma _A^2\) is around 0.6 for cognitive ability and around 0.4 for education (Branigan et al. 2013; Briley and Tucker-Drob 2013) this leads to a genetic correlation of 0.6 in DZ twins for both outcomes.

References

  1. Allison, P. (2001). Missing data. Los Angeles: Sage Publications.

    Google Scholar 

  2. Allmendinger, J. (1989). The organization of formal and vocational training. In J. Allmendinger (Eds), Career mobility dynamics: A comparative analysis of the United States, Norway and West Germany (pp. 45–69). Berlin: Max Planck Institut für Bildungsforschung.

    Google Scholar 

  3. Becker, M., Lüdtke, O., Trautwein, U., Köller, O., & Baumert, J. (2012). The differential effects of school tracking on psychometric intelligence: Do academic-track schools make students smarter? Journal of Educational Psychology, 104(3), 682–699. doi:10.1037/a0027608.

    Article  Google Scholar 

  4. Becker, G. S., & Tomes, N. (1979). An equilibrium theory of the distribution of income and intergenerational mobility. Journal of Political Economy, 87(6), 1153–1189.

    Article  Google Scholar 

  5. Beller, E., & Hout, M. (2006). Welfare states and social mobility: How educational and social policy may affect cross-national differences in the association between occupational origins and destinations. Research in Social Stratification and Mobility, 24(4), 353–365.

    Article  Google Scholar 

  6. Beyers, W., Goossens, L., Vansant, I., & Moors, E. (2003). A structural model of autonomy in middle and late adolescence: Connectedness, separation, detachment, and agency. Journal of Youth and Adolescence, 32(5), 351–365. doi:10.1023/A:1024922031510.

    Article  Google Scholar 

  7. Biedinger, N. (2011). The influence of education and home environment on the cognitive outcomes of preschool children in Germany. Child Development Research, 2011, 1–10. doi:10.1155/2011/916303.

    Article  Google Scholar 

  8. Björklund, A., Eriksson, K. H., & Jäntti, M. (2010). IQ and family background: Are associations strong or weak? The BE Journal of Economic Analysis & Policy, 10(1), 1–12. http://www.degruyter.com/view/j/bejeap.2010.10.1/bejeap.2010.10.1.2349/bejeap.2010.10.1.2349.xml.

  9. Black, S. E., Devereux, P. J., & Salvanes, K. G. (2008). Like father, like son? A note on the intergenerational transmission of IQ scores. IZA Discussion Paper No. 3651. Bonn: Forschungsinstitut zur Zukunft der Arbeit.

  10. Blau, D. M. (1999). The effect of income on child development. Review of Economics and Statistics, 81(2), 261–276. doi:10.1162/003465399558067.

    Article  Google Scholar 

  11. Blau, P. M., & Duncan, O. D. (1967). The American occupational structure. New York, NY: Wiley.

    Google Scholar 

  12. Blossfeld, H. P. (2009). Educational assortative marriage in comparative perspective. Annual Review of Sociology, 35, 513–530.

  13. Blossfeld, H.-P., & Shavit, Y. (1993). Persisting barriers: Changes in educational opportunities in thirteen countries. In Y. Shavit & H.-P. Blossfeld (Eds.), Persistent inequality: Changing educational attainment in thirteen countries (pp. 1–23). Boulder, CO: Westview.

    Google Scholar 

  14. Bodovski, K., & Farkas, G. (2008). “Concerted cultivation” and unequal achievement in elementary school. Social Science Research, 37, 903–919.

    Article  Google Scholar 

  15. Bourdieu, P. (1984). Distinction: A social critique of the judgement of taste. Cambridge, MA: Harvard University Press.

    Google Scholar 

  16. Bourdieu, P. (1986). The forms of capital. In J. G. Richardson (Ed.), Handbook of theory and research in the sociology of education (pp. 241–258). New York: Greenwood Press.

    Google Scholar 

  17. Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371–399. doi:10.1146annurev.psch.53.100901.135233.

    PubMed  Article  Google Scholar 

  18. Branigan, A. R., McCallum, K. J., & Freese, J. (2013). Variation in the heritability of educational attainment: An international meta-analysis. Social Forces, 92(1), 109–140. doi:10.1093/sf/sot076.

    Article  Google Scholar 

  19. Breen, R., & Jonsson, J. O. (2005). Inequality of opportunity in comparative perspective: Recent research on educational attainment and social mobility. Annual Review of Sociology, 31, 223–243. doi:10.1146/annurev.soc.31.041304.122232.

    Article  Google Scholar 

  20. Breen, R., & Goldthorpe, J. H. (1997). Explaining educational differentials. Towards a formal rational action theory. Rationality and Society, 9(3), 275–305.

    Article  Google Scholar 

  21. Briley, D. A., Harden, K. P., & Tucker-Drob, E. M. (2014). Child characteristics and parental educational expectations: Evidence for transmission with transaction. Developmental Psychology, 50(12), 2614–2632. doi:10.1037/a0038094.Child.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Briley, D. A., & Tucker-Drob, E. M. (2013). Explaining the increasing heritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. Psychological Science, 24(9), 1704–1713. doi:10.1177/0956797613478618.

    PubMed  PubMed Central  Article  Google Scholar 

  23. Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. Future of Children, 7(2), 55–71. doi:10.4314/ai.v32i1.22297.

    PubMed  Article  Google Scholar 

  24. Bukodi, E., Erikson, R., & Goldthorpe, J. H. (2014). The effects of social origins and cognitive ability on educational attainment: Evidence from Britain and Sweden. Acta Sociologica, 57(4), 1–18. doi:10.1177/0001699314543803.

    Article  Google Scholar 

  25. Catell, R., & Catell, B. (1960). Culture fair intelligence test, scale 2. Campaign, IL: IPAT.

    Google Scholar 

  26. Chan, T. W., & Goldthorpe, J. H. (2007). Class and status: The conceptual distinction and its empirical relevance. American Sociological Review, 72(4), 512–532. doi:10.1177/000312240707200402.

    Article  Google Scholar 

  27. De Graaf, P. M. (1988). Parents’ financial and cultural resources, grades, and transition to secondary school in the Federal Republic of Germany. European Sociological Review, 4(3), 209–221.

    Article  Google Scholar 

  28. De Graaf, P. M., & Ganzeboom, H. B. G. (1993). Family background and educational attainment in the Netherlands for the 1891–1960 birth cohorts. In Y. Shavit & H.- P. Blossfeld (Eds.), Persistent inequality: Changing educational attainment in thirteen countries (pp. 75–100). Boulder, CO: Westview.

    Google Scholar 

  29. Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63(1), 453–482. doi:10.1146/annurev-psych-120710-100353.

    PubMed  Article  Google Scholar 

  30. Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews. Neuroscience, 11(3), 201–211. doi:10.1038/nrn2793.

    PubMed  Google Scholar 

  31. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21.

    Article  Google Scholar 

  32. Deary, I. J., Yang, J., Davies, G., Harris, S. E., Tenesa, A., & Liewald, D., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 482, 212–215. doi:10.1038/nature10781.

    PubMed  Google Scholar 

  33. Derks, E. M., Dolan, C. V., & Boomsma, D. I. (2006). A test of the equal environment assumption (EEA) in multivariate twin studies. Twin Research and Human Genetics, 9(3), 403–411. doi:10.1375/twin.9.3.403.

    PubMed  Article  Google Scholar 

  34. Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108(2), 346–369.

    PubMed  Article  Google Scholar 

  35. Diewald, M., Riemann, R., Spinath, F. M., Gottschling, J., Hahn, E., Kornadt, A. E., et al. (2016). TwinLife. GESIS Datenarchiv, Köln. ZA6701 Datenfile Version 1.0.0. doi:10.4232/1.12665.

  36. Diewald, M., Baier, T., Schulz, W., & Schunck, R. (2015). Status attainment and social mobility: How can genetics contribute to an understanding of their causes? KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 67(S1), 371–395. doi:10.1007/s11577-015-0317-6.

    Article  Google Scholar 

  37. Ditton, H., Krüsken, J., & Schauenberg, M. (2005). Bildungsungleichheit — der Beitrag von Familie und Schule. Zeitschrift für Erziehungswissenschaft, 8(2), 285–304. doi:10.1007/s11618-005-0138-x.

    Article  Google Scholar 

  38. Doren, C., & Grodsky, E. (2016). What skills can buy: Transmission of advantage through cognitive and noncognitive skills. Sociology of Education, 89(4), 321–342. doi:10.1177/0038040716667994.

    PubMed  Article  Google Scholar 

  39. Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive functioning: Moving from correlation to causation. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 377–386. doi:10.1002/wcs.1176.

    PubMed  Google Scholar 

  40. Duncan, G. J., Morris, P. A., & Rodrigues, C. (2011). Does money really matter? Estimating impacts of family income on young children’s achievement with data from random-assignment experiments. Developmental Psychology, 47(5), 1263–1279. doi:10.1037/a0023875.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Duncan, G. J., Yeung, W. J., Brooks-Gunn, J., & Smith, J. R. (1998). How much does childhood poverty affect the life chances of children? American Sociological Review, 63(3), 406–423. doi:10.2307/2657556.

    Article  Google Scholar 

  42. Erikson, R. (2016). Is it enough to be bright? Parental background, cognitive ability and educational attainment. European Societies, 18(2), 117–135. doi:10.1080/14616696.2016.1141306.

    Article  Google Scholar 

  43. Farkas, G. (2003). Cognitive skills and noncognitive traits and behaviors in stratification processes. Annual Review of Sociology, 29, 541–562. doi:10.1146/annurev.soc.29.010202.100023.

    Article  Google Scholar 

  44. Flynn, J. R. (2007). What is intelligence? Beyond the flynn effect. Cambridge: Cambridge University Press. doi:10.1007/BF03076406

    Google Scholar 

  45. Freese, J. (2008). Genetics and the social science explanation of individual outcomes. American Journal of Sociology, 114(S1), S1–S35. doi:10.1086/592208.

    Article  Google Scholar 

  46. Freese, J., & Jao, Y.-H. (2015). Shared environment estimates for educational attainment: A puzzle and possible solutions. Journal of Personality, 85(1), 2–10.

    Google Scholar 

  47. Ganzeboom, H. B. G., De Graaf, P. M., & Treiman, D. J. (1992). A standard international socio-economic index of occupational status. Social Science Research, 21(1), 1–56.

    Article  Google Scholar 

  48. Gebel, M. (2011). Familiäre Einkommensarmut und kindlicher Bildungserfolg. In P. A. Berger, K. Hank & A. Tölke (Eds.), Reproduktion von Ungleichheit durch Arbeit und Familie (pp. 259–278). Wiesbaden: VS Verlag für Sozialwissenschaften. doi:10.1007/978-3-531-94117-2.

    Google Scholar 

  49. Gottschling, J. (2017). Documentation TwinLife Data: Cognitive Abilities. TwinLife Technical Report Series. Bielefeld/Saarbrücken. https://dbk.gesis.org/DBKSearch/download.asp?db=D&id=60848.

  50. Guo, G., & Harris, K. M. (2011). The mechanisms mediating the effects of poverty on children’s intellectual development. Demography, 37(4), 431–447.

    Article  Google Scholar 

  51. Gustafsson, J. E., & Undheim, J. O. (1996). Individual differences in cognitive functions. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 186–242). New York, NY: Prentice Hall International.

    Google Scholar 

  52. Hahn, E., Gottschling, J., Bleidorn, W., Kandler, C., Spengler, M., Kornadt, A. E., et al. (2016). What drives the development of social inequality over the life course? The German TwinLife study. Twin Research and Human Genetics, 19(6), 659–672. doi:10.1017/thg.2016.76.

    PubMed  Article  Google Scholar 

  53. Harding, J. F., Morris, P. A., & Hughes, D. (2015). The relationship between maternal education and children’s academic outcomes: A theoretical framework. Journal of Marriage and Family, 77(1), 60–76. doi:10.1111/jomf.12156.

    Article  Google Scholar 

  54. Hart, B., & Risley, T. R. (1992). American parenting of language-learning children: Persistent differences in family-child interactions observed in natural home environments. Developmental Psychology, 28(6), 1096–1105.

    Article  Google Scholar 

  55. Hauser, R. M., & Warren, J. R. (1997). Socioeconomic indexes for occupations: A review, update, and critique. Sociological Methodology, 27(1), 177–298.

    Article  Google Scholar 

  56. Haveman, R., & Wolfe, B. (1995). The determinants of children’s attainments: A review of methods and findings. Journal of Economic Literature, 33(4), 1829–1878.

    Google Scholar 

  57. Heckman, J., Stixrud, J., & Urzua, S. (2006). The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. Journal of Labor Economics, 24(3), 411–482.

    Article  Google Scholar 

  58. Hillmert, S., & Jacob, M. (2010). Selections and social selectivity on the academic track: A life-course analysis of educational attainment in Germany. Research in Social Stratification and Mobility, 28(1), 59–76. doi:10.1016/j.rssm.2009.12.006.

    Article  Google Scholar 

  59. Jaeger, M. M. (2011). Does cultural capital really affect academic achievement? New evidence from combined sibling and panel data. Sociology of Education, 84(4), 281–298. doi:10.1177/0038040711417010.

    Article  Google Scholar 

  60. Johnson, R. C., & Nagoshi, C. T. (1985). Parental ability, education and occupation as influences on offspring cognition in Hawaii and Korea. Personality and Individual Differences, 6(4), 413–423. doi:10.1016/0191-8869(85)90133-3.

    Article  Google Scholar 

  61. Johnson, W., McGue, M., & Iacono, W. G. (2006). Genetic and environmental influences on academic achievement trajectories during adolescence. Developmental Psychology, 42(3), 514–532.

    PubMed  Article  Google Scholar 

  62. Johnson, W., McGue, M., & Iacono, W. G. (2007a). How parents influence school grades: Hints from a sample of adoptive and biological families. Learning and Individual Differences, 17(3), 201–219. doi:10.1016/j.lindif.2007.04.004.How.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Johnson, W., McGue, M., & Iacono, W. G. (2007b). Socioeconomic status and school grades: Placing their association in broader context in a sample of biological and adoptive families. Intelligence, 35(6), 526–541. doi:10.3851/IMP2701.Changes.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Johnson, W., Turkheimer, E., Gottesman, I. I., & Bouchard, T. J. (2009). Beyond heritability: Twin studies in behavioral research. Current Directions in Psychological Science, 18(4), 217–220.

    Article  Google Scholar 

  65. Kalil, A., Ryan, R., & Corey, M. (2011). Diverging destinies: Maternal education and the development gradient in time with children. Demography, 49(4), 1361–1383.

    Article  Google Scholar 

  66. Karbach, J., Gottschling, J., Spengler, M., Hegewald, K., & Spinath, F. M. (2013). Parental involvement and general cognitive ability as predictors of domain-specific academic achievement in early adolescence. Learning and Instruction, 23(1), 43–51. doi:10.1016/j.learninstruc.2012.09.004.

    Article  Google Scholar 

  67. Karlson, K. B., Holm, A., & Breen, R. (2012). Comparing regression coefficients between same-sample nested models using logit and probit: A new method. Sociological Methodology, 42(1), 286–313. doi:10.1177/0081175012444861.

    Article  Google Scholar 

  68. Kerckhoff, A. C. (2001). Education and social stratification processes in comparative perspective. Sociology of Education, 74(Extra Issue), 3–18.

    Article  Google Scholar 

  69. Korenman, S., & Winship, C. (1995). A reanalysis of the bell curve. NBER Working Paper No. 5230. Cambridge, MA: NBER.

  70. Korpi, W. (2000). Faces of inequality: Gender, class, and patterns of inequalities in different types of welfare states. Social Politics: International Studies in Gender, State & Society, 7(2), 127–191.

    Article  Google Scholar 

  71. Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J.-B., et al. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences, 111(42), 15273–15278. doi:10.1073/pnas.1408777111.

    Article  Google Scholar 

  72. Lang, V., & Kottwitz, A. (2017). The sampling design and socio-demographic structure of the first wave of the TwinLife panel study: a comparison with the Microcensus. TwinLife Technical Report Series (Vol. 3).

  73. Lareau, A. (2011). Unequal childhoods: Class, race, and family life, with an update a decade later. Oakland: University of California Press.

    Google Scholar 

  74. Lareau, A., & Weininger, E. B. (2008). Class and the transition to adulthood. In A. Lareau & D. Conley (Eds.), Social class: How does it work? (pp. 118–151). New York, NY: Russell Sage Foundation.

    Google Scholar 

  75. Lleras, C. (2008). Do skills and behaviors in high school matter? The contribution of noncognitive factors in explaining differences in educational attainment and earnings. Social Science Research, 37(3), 888–902. doi:10.1016/j.ssresearch.2008.03.004.

    Article  Google Scholar 

  76. Loehlin, J. C., Harden, K. P., Turkheimer, E. (2009). The effect of assumptions about parental assortative mating and genotype–income correlation on estimates of genotype– environment interaction in the national merit twin study. Behavior Genetics, 39(2), 165–169. doi:10.1007/s10519-008-9253-9.

    PubMed  Article  Google Scholar 

  77. Mayer, S. E. (1997). What money can’t buy: Family income and children’s life chances. Cambridge, MA: Harvard University Press.

    Google Scholar 

  78. Mercy, J. A., & Steelman, L. C. (1982). Familial influence on the intellectual attainment of children. American Sociological Review, 47(4), 532–542.

    Article  Google Scholar 

  79. Mood, C. (2010). Logistic regression: Why we cannot do what we think we can do, and what we can do about it. European Sociological Review, 26(1), 67–82. doi:10.1093/esr/jcp006.

    Article  Google Scholar 

  80. Nisbett, R. E., Aronson, J. B., Dickens, C., Flynn, W., Halpern, D. F., et al. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67(2), 130–159. doi:10.1037/a0026699.

    PubMed  Article  Google Scholar 

  81. OECD. (2013). OECD framework for statistics on the distribution of household income, consumption and wealth. Paris: OECD. doi:10.1787/9789264194830-en.

    Google Scholar 

  82. Parcel, T., & Menaghan, E. (1994). Parents’ jobs and children’s lives. New York, NY: Aldine de Gruyter.

    Google Scholar 

  83. Pearlin, L. I., & Kohn, M. L. (1966). Social class, occupation, and parental values: A cross-national study. American Sociological Review, 31(4), 466–479.

    PubMed  Article  Google Scholar 

  84. Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20(1), 98–108. doi:10.1038/mp.2014.105.

    PubMed  Article  Google Scholar 

  85. Pike, A., Reiss, D., Hetherington, E. M., & Plomin, R. (1996). Using MZ differences in the search for nonshared environmental effects. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 37(6), 695–704. http://www.ncbi.nlm.nih.gov/pubmed/8894950

  86. Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709. doi:10.1038/ng.3285.

    PubMed  Article  Google Scholar 

  87. Reimer, D., & Pollak, R. (2010). Educational expansion and its consequences for vertical and horizontal inequalities in access to higher education in West Germany. European Sociological Review, 26(4), 415–430. doi:10.1093/esr/jcp029.

    Article  Google Scholar 

  88. Roth, T., & Siegert, M. (2016). Does the selectivity of an educational system affect social inequality in educational attainment? Empirical findings for the transition from primary to secondary level in Germany. European Sociological Review, 32(6), 779–791. doi:10.1093/esr/jcw034.

    Article  Google Scholar 

  89. Sayer, L. C., Gauthier, A. H., & Furstenberg, F. F. (2004). Educational differences in parents’ time with children: Cross-national variations. Journal of Marriage and Family, 66(5), 1152–1169. doi:10.1111/j.0022-2445.2004.00084.x.

    Article  Google Scholar 

  90. Schisterman, E. F., Cole, S. R., & Platt, R. W. (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology (Cambridge, Mass.), 20(4), 488–495. doi:10.1097/EDE.0b013e3181a819a1.Overadjustment.

    Article  Google Scholar 

  91. Schneider, T. (2004). Der Einfluss des Einkommens der Eltern auf die Schulwahl. Zeitschrift für Soziologie, 33(6), 471–492. http://ideas.repec.org/p/diw/diwwpp/dp446.html.

    Article  Google Scholar 

  92. Schneider, T. (2008). Social inequality in educational participation in the German school system in a longitudinal perspective: Pathways into and out of the most prestigious school track. European Sociological Review, 24(4), 511–526. doi:10.1093/esr/jcn017.

    Article  Google Scholar 

  93. Schneider, S. L., & Kogan, I. (2008). The international standard classification of education 1997: Challenges in the application to national data and the implementation in cross-national surveys. The International Standard Classification of Education (ISCED-97). An Evaluation of Content and Criterion Validity for 15 European Countries, 2005, 13–46. doi:10.13140/RG.2.1.2517.8004.

    Google Scholar 

  94. Schöb, A. (2001). Educational opportunities of children in poverty. Vierteljahrshefte zur Wirtschaftsforschung, 70(1), 172–179.

    Article  Google Scholar 

  95. Sørensen, A. (2006). Welfare states, family inequality, and equality of opportunity. Research in Social Stratification and Mobility, 24(4), 367–375.

    Article  Google Scholar 

  96. Sewell, W. H., Haller, A. O., & Ohlendorf, G. W. (1970). The educational and early occupational status attainment process: Replication and revision. American Sociological Review, 35(6), 1014–1027. doi:10.2307/2093379.

    Article  Google Scholar 

  97. South, S. C., Hamdi, N. R., & Krueger, R. F. (2015). Biometric modeling of gene-environment interplay: The intersection of theory and method and applications for social inequality. Journal of Personality, 85(1), 22–37. doi:10.1111/jopy.12231.

    PubMed  Article  Google Scholar 

  98. StataCorp.Ltd. (2015). Stata multiple-imputation reference manual: Release 14. Publication, College Station, TX: A Stata Press.

  99. Steinberg, L., & Morris, A. S. (2001). Adolescent development. Annual Review of Psychology, 52(1), 83–110. doi:10.1146/annurev.psych.52.1.83.

    PubMed  Article  Google Scholar 

  100. Stocké, V. (2007). Explaining educational decision and effects of families’ social class position: An empirical test of the Breen-Goldthorpe model of educational attainment. European Sociological Review, 23(4), 505–519. doi:10.1093/esr/jcm014.

    Article  Google Scholar 

  101. Strenze, T. (2007). Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence, 35(5), 401–426. doi:10.1016/j.intell.2006.09.004.

    Article  Google Scholar 

  102. Sullivan, A. (2001). Cultural capital and educational attainment. Sociology, 35(4), 893–912. doi:0803973233.

    Article  Google Scholar 

  103. Trzaskowski, M., Yang, J., Visscher, P. M., & Plomin, R. (2014). DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12. Molecular Psychiatry, 19, 380–384. doi:10.1038/mp.2012.191.

    PubMed  Article  Google Scholar 

  104. Tucker-Drob, E. M., Briley, D. A., & Harden, K. P. (2013). Genetic and environmental influences on cognition across development and context. Current Directions in Psychological Science, 22(5), 349–355. doi:10.1177/0963721413485087.

    PubMed  PubMed Central  Article  Google Scholar 

  105. Van de Werfhorst, H. G., & Mijs, J. J. B. (2010). Achievement inequality and the institutional structure of educational systems: A comparative perspective. Annual Review of Sociology, 36(1), 407–428. doi:10.1146/annurev.soc.012809.102538.

    Article  Google Scholar 

  106. Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era: Concepts and misconceptions. Nature reviews. Genetics, 9(4), 255–266. doi:10.1038/nrg2322.

    PubMed  Article  Google Scholar 

  107. von Stumm, S., Gale, C. R., Batty, G. D., & Deary, I. J. (2009). Childhood intelligence, locus of control and behaviour disturbance as determinants of intergenerational social mobility: British cohort study 1970. Intelligence, 37(4), 329–340. doi:10.1016/j.intell.2009.04.002.

    Article  Google Scholar 

  108. Weininger, E. B., Lareau, A., & Conley, D. (2015). What money doesn’t buy: Class resources and children’s participation in organized extracurricular activities. Social Forces, 94(2), 479–503.

    Article  Google Scholar 

  109. Weiss, R. H. (2006). Grundintelligenztest Skala 2 (CFT 20-R). [Basic intelligence scale 2 (revised)]. Goettingen: Hogrefe.

    Google Scholar 

  110. White, K. R. (1982). The relation between socioeconomic status and academic achievement. Psychological Bulletin, 91(3), 461–481. doi:10.1037/0033-2909.91.3.461.

    Article  Google Scholar 

  111. White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30(4), 377–399. doi:10.1002/sim.4067.

    PubMed  Article  Google Scholar 

  112. Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge, MA: MIT.

    Google Scholar 

  113. Yeung, W. J., Linver, M. R., & Brooks-Gunn, J. (2002). How money matters for young children’s development: Parental investment and family processes. Child Development, 73(6), 1861–1879. doi:10.2307/3696422.

    PubMed  Article  Google Scholar 

Download references

Author Contributions

W.S. conceived of the study, coordinated and drafted the manuscript; R.S. conceived of the study, performed the statistical analyses and participated in drafting the manuscript; M.D. participated in the design and was involved in the theoretical framework; W.J. contributed ideas to study design, interpretation of the data, analysis and drafting the manuscript. All authors read and approved the final version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wiebke Schulz.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All procedures were in accordance with the ethical standards of the German Science Foundation and approved by Bielefeld University.

Informed Consent

Informed consent was obtained from all students that participated in the study and their parents.

Appendix

Appendix

Table 5

Table 5 Factor loadings of the four subtests of the CFT

Table 6

Table 6 Pairwise correlations between covariates

Table 7

Table 7 Standardized variances estimates for CFT score and academic track, alternative codings

Table 8

Table 8 Random effects models (linear) for family-resources and parent cognitive ability effects on child cognitive ability, unstandardized coefficients

Table 9

Table 9 Random effects models (logit) for family-resources and parent cognitive ability effects on academic track, odds ratios

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulz, W., Schunck, R., Diewald, M. et al. Pathways of Intergenerational Transmission of Advantages during Adolescence: Social Background, Cognitive Ability, and Educational Attainment. J Youth Adolescence 46, 2194–2214 (2017). https://doi.org/10.1007/s10964-017-0718-0

Download citation

Keywords

  • Educational attainment
  • Academic tracking
  • Parental education
  • Parents’ occupational status
  • Parental income
  • Cognitive ability, genetic and environmental influences