Advertisement

Journal of Youth and Adolescence

, Volume 46, Issue 10, pp 2194–2214 | Cite as

Pathways of Intergenerational Transmission of Advantages during Adolescence: Social Background, Cognitive Ability, and Educational Attainment

  • Wiebke SchulzEmail author
  • Reinhard Schunck
  • Martin Diewald
  • Wendy Johnson
Empirical Research

Abstract

Educational attainment in adolescence is of paramount importance for attaining higher education and for shaping subsequent life chances. Sociological accounts focus on the role of differences in socioeconomic resources in intergenerational reproduction of educational inequalities. These often disregard the intergenerational transmission of cognitive ability and the importance of children’s cognitive ability to educational attainment. Psychological perspectives stress the importance of cognitive ability for educational attainment but underemphasize potentially different roles of specific socioeconomic resources in shaping educational outcomes, as well as individual differences in cognitive ability. By integrating two strands of research, a clearer picture of the pathways linking the family of origin, cognitive ability, and early educational outcomes can be reached. Using the population-based TwinLife study in Germany, we investigated multidimensional pathways linking parental socioeconomic position to their children’s cognitive ability and academic track attendance in the secondary school. The sample included twins (N = 4008), respectively ages 11 and 17, and siblings (N = 801). We observed strong genetic influences on cognitive ability, whereas shared environmental influences were much more important for academic tracking. In multilevel analyses, separate dimensions of socioeconomic resources influenced child cognitive ability, controlling parental cognitive ability. Controlling adolescent cognitive ability and parental cognitive ability, parental socioeconomic resources also directly affected track attendance. This indicated that it is crucial to investigate the intertwined influences on educational outcomes in adolescence of both cognitive ability and the characteristics of the family of origin.

Keywords

Educational attainment Academic tracking Parental education Parents’ occupational status Parental income Cognitive ability, genetic and environmental influences 

Notes

Author Contributions

W.S. conceived of the study, coordinated and drafted the manuscript; R.S. conceived of the study, performed the statistical analyses and participated in drafting the manuscript; M.D. participated in the design and was involved in the theoretical framework; W.J. contributed ideas to study design, interpretation of the data, analysis and drafting the manuscript. All authors read and approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All procedures were in accordance with the ethical standards of the German Science Foundation and approved by Bielefeld University.

Informed Consent

Informed consent was obtained from all students that participated in the study and their parents.

References

  1. Allison, P. (2001). Missing data. Los Angeles: Sage Publications.CrossRefGoogle Scholar
  2. Allmendinger, J. (1989). The organization of formal and vocational training. In J. Allmendinger (Eds), Career mobility dynamics: A comparative analysis of the United States, Norway and West Germany (pp. 45–69). Berlin: Max Planck Institut für Bildungsforschung.Google Scholar
  3. Becker, M., Lüdtke, O., Trautwein, U., Köller, O., & Baumert, J. (2012). The differential effects of school tracking on psychometric intelligence: Do academic-track schools make students smarter? Journal of Educational Psychology, 104(3), 682–699. doi: 10.1037/a0027608.CrossRefGoogle Scholar
  4. Becker, G. S., & Tomes, N. (1979). An equilibrium theory of the distribution of income and intergenerational mobility. Journal of Political Economy, 87(6), 1153–1189.CrossRefGoogle Scholar
  5. Beller, E., & Hout, M. (2006). Welfare states and social mobility: How educational and social policy may affect cross-national differences in the association between occupational origins and destinations. Research in Social Stratification and Mobility, 24(4), 353–365.CrossRefGoogle Scholar
  6. Beyers, W., Goossens, L., Vansant, I., & Moors, E. (2003). A structural model of autonomy in middle and late adolescence: Connectedness, separation, detachment, and agency. Journal of Youth and Adolescence, 32(5), 351–365. doi: 10.1023/A:1024922031510.CrossRefGoogle Scholar
  7. Biedinger, N. (2011). The influence of education and home environment on the cognitive outcomes of preschool children in Germany. Child Development Research, 2011, 1–10. doi: 10.1155/2011/916303.CrossRefGoogle Scholar
  8. Björklund, A., Eriksson, K. H., & Jäntti, M. (2010). IQ and family background: Are associations strong or weak? The BE Journal of Economic Analysis & Policy, 10(1), 1–12. http://www.degruyter.com/view/j/bejeap.2010.10.1/bejeap.2010.10.1.2349/bejeap.2010.10.1.2349.xml.
  9. Black, S. E., Devereux, P. J., & Salvanes, K. G. (2008). Like father, like son? A note on the intergenerational transmission of IQ scores. IZA Discussion Paper No. 3651. Bonn: Forschungsinstitut zur Zukunft der Arbeit.Google Scholar
  10. Blau, D. M. (1999). The effect of income on child development. Review of Economics and Statistics, 81(2), 261–276. doi: 10.1162/003465399558067.CrossRefGoogle Scholar
  11. Blau, P. M., & Duncan, O. D. (1967). The American occupational structure. New York, NY: Wiley.Google Scholar
  12. Blossfeld, H. P. (2009). Educational assortative marriage in comparative perspective. Annual Review of Sociology, 35, 513–530.Google Scholar
  13. Blossfeld, H.-P., & Shavit, Y. (1993). Persisting barriers: Changes in educational opportunities in thirteen countries. In Y. Shavit & H.-P. Blossfeld (Eds.), Persistent inequality: Changing educational attainment in thirteen countries (pp. 1–23). Boulder, CO: Westview.Google Scholar
  14. Bodovski, K., & Farkas, G. (2008). “Concerted cultivation” and unequal achievement in elementary school. Social Science Research, 37, 903–919.CrossRefGoogle Scholar
  15. Bourdieu, P. (1984). Distinction: A social critique of the judgement of taste. Cambridge, MA: Harvard University Press.Google Scholar
  16. Bourdieu, P. (1986). The forms of capital. In J. G. Richardson (Ed.), Handbook of theory and research in the sociology of education (pp. 241–258). New York: Greenwood Press.Google Scholar
  17. Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371–399. doi:10.1146annurev.psch.53.100901.135233.PubMedCrossRefGoogle Scholar
  18. Branigan, A. R., McCallum, K. J., & Freese, J. (2013). Variation in the heritability of educational attainment: An international meta-analysis. Social Forces, 92(1), 109–140. doi: 10.1093/sf/sot076.CrossRefGoogle Scholar
  19. Breen, R., & Jonsson, J. O. (2005). Inequality of opportunity in comparative perspective: Recent research on educational attainment and social mobility. Annual Review of Sociology, 31, 223–243. doi: 10.1146/annurev.soc.31.041304.122232.CrossRefGoogle Scholar
  20. Breen, R., & Goldthorpe, J. H. (1997). Explaining educational differentials. Towards a formal rational action theory. Rationality and Society, 9(3), 275–305.CrossRefGoogle Scholar
  21. Briley, D. A., Harden, K. P., & Tucker-Drob, E. M. (2014). Child characteristics and parental educational expectations: Evidence for transmission with transaction. Developmental Psychology, 50(12), 2614–2632. doi: 10.1037/a0038094.Child.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Briley, D. A., & Tucker-Drob, E. M. (2013). Explaining the increasing heritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. Psychological Science, 24(9), 1704–1713. doi: 10.1177/0956797613478618.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. Future of Children, 7(2), 55–71. doi: 10.4314/ai.v32i1.22297.PubMedCrossRefGoogle Scholar
  24. Bukodi, E., Erikson, R., & Goldthorpe, J. H. (2014). The effects of social origins and cognitive ability on educational attainment: Evidence from Britain and Sweden. Acta Sociologica, 57(4), 1–18. doi: 10.1177/0001699314543803.CrossRefGoogle Scholar
  25. Catell, R., & Catell, B. (1960). Culture fair intelligence test, scale 2. Campaign, IL: IPAT.Google Scholar
  26. Chan, T. W., & Goldthorpe, J. H. (2007). Class and status: The conceptual distinction and its empirical relevance. American Sociological Review, 72(4), 512–532. doi: 10.1177/000312240707200402.CrossRefGoogle Scholar
  27. De Graaf, P. M. (1988). Parents’ financial and cultural resources, grades, and transition to secondary school in the Federal Republic of Germany. European Sociological Review, 4(3), 209–221.CrossRefGoogle Scholar
  28. De Graaf, P. M., & Ganzeboom, H. B. G. (1993). Family background and educational attainment in the Netherlands for the 1891–1960 birth cohorts. In Y. Shavit & H.- P. Blossfeld (Eds.), Persistent inequality: Changing educational attainment in thirteen countries (pp. 75–100). Boulder, CO: Westview.Google Scholar
  29. Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63(1), 453–482. doi: 10.1146/annurev-psych-120710-100353.PubMedCrossRefGoogle Scholar
  30. Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews. Neuroscience, 11(3), 201–211. doi: 10.1038/nrn2793.PubMedGoogle Scholar
  31. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21.CrossRefGoogle Scholar
  32. Deary, I. J., Yang, J., Davies, G., Harris, S. E., Tenesa, A., & Liewald, D., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 482, 212–215. doi: 10.1038/nature10781.PubMedGoogle Scholar
  33. Derks, E. M., Dolan, C. V., & Boomsma, D. I. (2006). A test of the equal environment assumption (EEA) in multivariate twin studies. Twin Research and Human Genetics, 9(3), 403–411. doi: 10.1375/twin.9.3.403.PubMedCrossRefGoogle Scholar
  34. Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108(2), 346–369.PubMedCrossRefGoogle Scholar
  35. Diewald, M., Riemann, R., Spinath, F. M., Gottschling, J., Hahn, E., Kornadt, A. E., et al. (2016). TwinLife. GESIS Datenarchiv, Köln. ZA6701 Datenfile Version 1.0.0. doi: 10.4232/1.12665.
  36. Diewald, M., Baier, T., Schulz, W., & Schunck, R. (2015). Status attainment and social mobility: How can genetics contribute to an understanding of their causes? KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 67(S1), 371–395. doi: 10.1007/s11577-015-0317-6.CrossRefGoogle Scholar
  37. Ditton, H., Krüsken, J., & Schauenberg, M. (2005). Bildungsungleichheit — der Beitrag von Familie und Schule. Zeitschrift für Erziehungswissenschaft, 8(2), 285–304. doi: 10.1007/s11618-005-0138-x.CrossRefGoogle Scholar
  38. Doren, C., & Grodsky, E. (2016). What skills can buy: Transmission of advantage through cognitive and noncognitive skills. Sociology of Education, 89(4), 321–342. doi: 10.1177/0038040716667994.PubMedCrossRefGoogle Scholar
  39. Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive functioning: Moving from correlation to causation. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 377–386. doi: 10.1002/wcs.1176.PubMedGoogle Scholar
  40. Duncan, G. J., Morris, P. A., & Rodrigues, C. (2011). Does money really matter? Estimating impacts of family income on young children’s achievement with data from random-assignment experiments. Developmental Psychology, 47(5), 1263–1279. doi: 10.1037/a0023875.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duncan, G. J., Yeung, W. J., Brooks-Gunn, J., & Smith, J. R. (1998). How much does childhood poverty affect the life chances of children? American Sociological Review, 63(3), 406–423. doi: 10.2307/2657556.CrossRefGoogle Scholar
  42. Erikson, R. (2016). Is it enough to be bright? Parental background, cognitive ability and educational attainment. European Societies, 18(2), 117–135. doi: 10.1080/14616696.2016.1141306.CrossRefGoogle Scholar
  43. Farkas, G. (2003). Cognitive skills and noncognitive traits and behaviors in stratification processes. Annual Review of Sociology, 29, 541–562. doi: 10.1146/annurev.soc.29.010202.100023.CrossRefGoogle Scholar
  44. Flynn, J. R. (2007). What is intelligence? Beyond the flynn effect. Cambridge: Cambridge University Press. doi: 10.1007/BF03076406 CrossRefGoogle Scholar
  45. Freese, J. (2008). Genetics and the social science explanation of individual outcomes. American Journal of Sociology, 114(S1), S1–S35. doi: 10.1086/592208.CrossRefGoogle Scholar
  46. Freese, J., & Jao, Y.-H. (2015). Shared environment estimates for educational attainment: A puzzle and possible solutions. Journal of Personality, 85(1), 2–10.Google Scholar
  47. Ganzeboom, H. B. G., De Graaf, P. M., & Treiman, D. J. (1992). A standard international socio-economic index of occupational status. Social Science Research, 21(1), 1–56.CrossRefGoogle Scholar
  48. Gebel, M. (2011). Familiäre Einkommensarmut und kindlicher Bildungserfolg. In P. A. Berger, K. Hank & A. Tölke (Eds.), Reproduktion von Ungleichheit durch Arbeit und Familie (pp. 259–278). Wiesbaden: VS Verlag für Sozialwissenschaften. doi: 10.1007/978-3-531-94117-2.CrossRefGoogle Scholar
  49. Gottschling, J. (2017). Documentation TwinLife Data: Cognitive Abilities. TwinLife Technical Report Series. Bielefeld/Saarbrücken. https://dbk.gesis.org/DBKSearch/download.asp?db=D&id=60848.Google Scholar
  50. Guo, G., & Harris, K. M. (2011). The mechanisms mediating the effects of poverty on children’s intellectual development. Demography, 37(4), 431–447.CrossRefGoogle Scholar
  51. Gustafsson, J. E., & Undheim, J. O. (1996). Individual differences in cognitive functions. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 186–242). New York, NY: Prentice Hall International.Google Scholar
  52. Hahn, E., Gottschling, J., Bleidorn, W., Kandler, C., Spengler, M., Kornadt, A. E., et al. (2016). What drives the development of social inequality over the life course? The German TwinLife study. Twin Research and Human Genetics, 19(6), 659–672. doi: 10.1017/thg.2016.76.PubMedCrossRefGoogle Scholar
  53. Harding, J. F., Morris, P. A., & Hughes, D. (2015). The relationship between maternal education and children’s academic outcomes: A theoretical framework. Journal of Marriage and Family, 77(1), 60–76. doi: 10.1111/jomf.12156.CrossRefGoogle Scholar
  54. Hart, B., & Risley, T. R. (1992). American parenting of language-learning children: Persistent differences in family-child interactions observed in natural home environments. Developmental Psychology, 28(6), 1096–1105.CrossRefGoogle Scholar
  55. Hauser, R. M., & Warren, J. R. (1997). Socioeconomic indexes for occupations: A review, update, and critique. Sociological Methodology, 27(1), 177–298.CrossRefGoogle Scholar
  56. Haveman, R., & Wolfe, B. (1995). The determinants of children’s attainments: A review of methods and findings. Journal of Economic Literature, 33(4), 1829–1878.Google Scholar
  57. Heckman, J., Stixrud, J., & Urzua, S. (2006). The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. Journal of Labor Economics, 24(3), 411–482.CrossRefGoogle Scholar
  58. Hillmert, S., & Jacob, M. (2010). Selections and social selectivity on the academic track: A life-course analysis of educational attainment in Germany. Research in Social Stratification and Mobility, 28(1), 59–76. doi: 10.1016/j.rssm.2009.12.006.CrossRefGoogle Scholar
  59. Jaeger, M. M. (2011). Does cultural capital really affect academic achievement? New evidence from combined sibling and panel data. Sociology of Education, 84(4), 281–298. doi: 10.1177/0038040711417010.CrossRefGoogle Scholar
  60. Johnson, R. C., & Nagoshi, C. T. (1985). Parental ability, education and occupation as influences on offspring cognition in Hawaii and Korea. Personality and Individual Differences, 6(4), 413–423. doi: 10.1016/0191-8869(85)90133-3.CrossRefGoogle Scholar
  61. Johnson, W., McGue, M., & Iacono, W. G. (2006). Genetic and environmental influences on academic achievement trajectories during adolescence. Developmental Psychology, 42(3), 514–532.PubMedCrossRefGoogle Scholar
  62. Johnson, W., McGue, M., & Iacono, W. G. (2007a). How parents influence school grades: Hints from a sample of adoptive and biological families. Learning and Individual Differences, 17(3), 201–219. doi: 10.1016/j.lindif.2007.04.004.How.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Johnson, W., McGue, M., & Iacono, W. G. (2007b). Socioeconomic status and school grades: Placing their association in broader context in a sample of biological and adoptive families. Intelligence, 35(6), 526–541. doi: 10.3851/IMP2701.Changes.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Johnson, W., Turkheimer, E., Gottesman, I. I., & Bouchard, T. J. (2009). Beyond heritability: Twin studies in behavioral research. Current Directions in Psychological Science, 18(4), 217–220.CrossRefGoogle Scholar
  65. Kalil, A., Ryan, R., & Corey, M. (2011). Diverging destinies: Maternal education and the development gradient in time with children. Demography, 49(4), 1361–1383.CrossRefGoogle Scholar
  66. Karbach, J., Gottschling, J., Spengler, M., Hegewald, K., & Spinath, F. M. (2013). Parental involvement and general cognitive ability as predictors of domain-specific academic achievement in early adolescence. Learning and Instruction, 23(1), 43–51. doi: 10.1016/j.learninstruc.2012.09.004.CrossRefGoogle Scholar
  67. Karlson, K. B., Holm, A., & Breen, R. (2012). Comparing regression coefficients between same-sample nested models using logit and probit: A new method. Sociological Methodology, 42(1), 286–313. doi: 10.1177/0081175012444861.CrossRefGoogle Scholar
  68. Kerckhoff, A. C. (2001). Education and social stratification processes in comparative perspective. Sociology of Education, 74(Extra Issue), 3–18.CrossRefGoogle Scholar
  69. Korenman, S., & Winship, C. (1995). A reanalysis of the bell curve. NBER Working Paper No. 5230. Cambridge, MA: NBER.Google Scholar
  70. Korpi, W. (2000). Faces of inequality: Gender, class, and patterns of inequalities in different types of welfare states. Social Politics: International Studies in Gender, State & Society, 7(2), 127–191.CrossRefGoogle Scholar
  71. Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J.-B., et al. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences, 111(42), 15273–15278. doi: 10.1073/pnas.1408777111.CrossRefGoogle Scholar
  72. Lang, V., & Kottwitz, A. (2017). The sampling design and socio-demographic structure of the first wave of the TwinLife panel study: a comparison with the Microcensus. TwinLife Technical Report Series (Vol. 3).Google Scholar
  73. Lareau, A. (2011). Unequal childhoods: Class, race, and family life, with an update a decade later. Oakland: University of California Press.Google Scholar
  74. Lareau, A., & Weininger, E. B. (2008). Class and the transition to adulthood. In A. Lareau & D. Conley (Eds.), Social class: How does it work? (pp. 118–151). New York, NY: Russell Sage Foundation.Google Scholar
  75. Lleras, C. (2008). Do skills and behaviors in high school matter? The contribution of noncognitive factors in explaining differences in educational attainment and earnings. Social Science Research, 37(3), 888–902. doi: 10.1016/j.ssresearch.2008.03.004.CrossRefGoogle Scholar
  76. Loehlin, J. C., Harden, K. P., Turkheimer, E. (2009). The effect of assumptions about parental assortative mating and genotype–income correlation on estimates of genotype– environment interaction in the national merit twin study. Behavior Genetics, 39(2), 165–169. doi: 10.1007/s10519-008-9253-9.PubMedCrossRefGoogle Scholar
  77. Mayer, S. E. (1997). What money can’t buy: Family income and children’s life chances. Cambridge, MA: Harvard University Press.Google Scholar
  78. Mercy, J. A., & Steelman, L. C. (1982). Familial influence on the intellectual attainment of children. American Sociological Review, 47(4), 532–542.CrossRefGoogle Scholar
  79. Mood, C. (2010). Logistic regression: Why we cannot do what we think we can do, and what we can do about it. European Sociological Review, 26(1), 67–82. doi: 10.1093/esr/jcp006.CrossRefGoogle Scholar
  80. Nisbett, R. E., Aronson, J. B., Dickens, C., Flynn, W., Halpern, D. F., et al. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67(2), 130–159. doi: 10.1037/a0026699.PubMedCrossRefGoogle Scholar
  81. OECD. (2013). OECD framework for statistics on the distribution of household income, consumption and wealth. Paris: OECD. doi: 10.1787/9789264194830-en.Google Scholar
  82. Parcel, T., & Menaghan, E. (1994). Parents’ jobs and children’s lives. New York, NY: Aldine de Gruyter.Google Scholar
  83. Pearlin, L. I., & Kohn, M. L. (1966). Social class, occupation, and parental values: A cross-national study. American Sociological Review, 31(4), 466–479.PubMedCrossRefGoogle Scholar
  84. Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20(1), 98–108. doi: 10.1038/mp.2014.105.PubMedCrossRefGoogle Scholar
  85. Pike, A., Reiss, D., Hetherington, E. M., & Plomin, R. (1996). Using MZ differences in the search for nonshared environmental effects. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 37(6), 695–704. http://www.ncbi.nlm.nih.gov/pubmed/8894950
  86. Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709. doi: 10.1038/ng.3285.PubMedCrossRefGoogle Scholar
  87. Reimer, D., & Pollak, R. (2010). Educational expansion and its consequences for vertical and horizontal inequalities in access to higher education in West Germany. European Sociological Review, 26(4), 415–430. doi: 10.1093/esr/jcp029.CrossRefGoogle Scholar
  88. Roth, T., & Siegert, M. (2016). Does the selectivity of an educational system affect social inequality in educational attainment? Empirical findings for the transition from primary to secondary level in Germany. European Sociological Review, 32(6), 779–791. doi: 10.1093/esr/jcw034.CrossRefGoogle Scholar
  89. Sayer, L. C., Gauthier, A. H., & Furstenberg, F. F. (2004). Educational differences in parents’ time with children: Cross-national variations. Journal of Marriage and Family, 66(5), 1152–1169. doi: 10.1111/j.0022-2445.2004.00084.x.CrossRefGoogle Scholar
  90. Schisterman, E. F., Cole, S. R., & Platt, R. W. (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology (Cambridge, Mass.), 20(4), 488–495. doi: 10.1097/EDE.0b013e3181a819a1.Overadjustment.CrossRefGoogle Scholar
  91. Schneider, T. (2004). Der Einfluss des Einkommens der Eltern auf die Schulwahl. Zeitschrift für Soziologie, 33(6), 471–492. http://ideas.repec.org/p/diw/diwwpp/dp446.html.CrossRefGoogle Scholar
  92. Schneider, T. (2008). Social inequality in educational participation in the German school system in a longitudinal perspective: Pathways into and out of the most prestigious school track. European Sociological Review, 24(4), 511–526. doi: 10.1093/esr/jcn017.CrossRefGoogle Scholar
  93. Schneider, S. L., & Kogan, I. (2008). The international standard classification of education 1997: Challenges in the application to national data and the implementation in cross-national surveys. The International Standard Classification of Education (ISCED-97). An Evaluation of Content and Criterion Validity for 15 European Countries, 2005, 13–46. doi: 10.13140/RG.2.1.2517.8004.Google Scholar
  94. Schöb, A. (2001). Educational opportunities of children in poverty. Vierteljahrshefte zur Wirtschaftsforschung, 70(1), 172–179.CrossRefGoogle Scholar
  95. Sørensen, A. (2006). Welfare states, family inequality, and equality of opportunity. Research in Social Stratification and Mobility, 24(4), 367–375.CrossRefGoogle Scholar
  96. Sewell, W. H., Haller, A. O., & Ohlendorf, G. W. (1970). The educational and early occupational status attainment process: Replication and revision. American Sociological Review, 35(6), 1014–1027. doi: 10.2307/2093379.CrossRefGoogle Scholar
  97. South, S. C., Hamdi, N. R., & Krueger, R. F. (2015). Biometric modeling of gene-environment interplay: The intersection of theory and method and applications for social inequality. Journal of Personality, 85(1), 22–37. doi: 10.1111/jopy.12231.PubMedCrossRefGoogle Scholar
  98. StataCorp.Ltd. (2015). Stata multiple-imputation reference manual: Release 14. Publication, College Station, TX: A Stata Press.Google Scholar
  99. Steinberg, L., & Morris, A. S. (2001). Adolescent development. Annual Review of Psychology, 52(1), 83–110. doi: 10.1146/annurev.psych.52.1.83.PubMedCrossRefGoogle Scholar
  100. Stocké, V. (2007). Explaining educational decision and effects of families’ social class position: An empirical test of the Breen-Goldthorpe model of educational attainment. European Sociological Review, 23(4), 505–519. doi: 10.1093/esr/jcm014.CrossRefGoogle Scholar
  101. Strenze, T. (2007). Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence, 35(5), 401–426. doi: 10.1016/j.intell.2006.09.004.CrossRefGoogle Scholar
  102. Sullivan, A. (2001). Cultural capital and educational attainment. Sociology, 35(4), 893–912. doi:0803973233.CrossRefGoogle Scholar
  103. Trzaskowski, M., Yang, J., Visscher, P. M., & Plomin, R. (2014). DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12. Molecular Psychiatry, 19, 380–384. doi: 10.1038/mp.2012.191.PubMedCrossRefGoogle Scholar
  104. Tucker-Drob, E. M., Briley, D. A., & Harden, K. P. (2013). Genetic and environmental influences on cognition across development and context. Current Directions in Psychological Science, 22(5), 349–355. doi: 10.1177/0963721413485087.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Van de Werfhorst, H. G., & Mijs, J. J. B. (2010). Achievement inequality and the institutional structure of educational systems: A comparative perspective. Annual Review of Sociology, 36(1), 407–428. doi: 10.1146/annurev.soc.012809.102538.CrossRefGoogle Scholar
  106. Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era: Concepts and misconceptions. Nature reviews. Genetics, 9(4), 255–266. doi: 10.1038/nrg2322.PubMedCrossRefGoogle Scholar
  107. von Stumm, S., Gale, C. R., Batty, G. D., & Deary, I. J. (2009). Childhood intelligence, locus of control and behaviour disturbance as determinants of intergenerational social mobility: British cohort study 1970. Intelligence, 37(4), 329–340. doi: 10.1016/j.intell.2009.04.002.CrossRefGoogle Scholar
  108. Weininger, E. B., Lareau, A., & Conley, D. (2015). What money doesn’t buy: Class resources and children’s participation in organized extracurricular activities. Social Forces, 94(2), 479–503.CrossRefGoogle Scholar
  109. Weiss, R. H. (2006). Grundintelligenztest Skala 2 (CFT 20-R). [Basic intelligence scale 2 (revised)]. Goettingen: Hogrefe.Google Scholar
  110. White, K. R. (1982). The relation between socioeconomic status and academic achievement. Psychological Bulletin, 91(3), 461–481. doi: 10.1037/0033-2909.91.3.461.CrossRefGoogle Scholar
  111. White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30(4), 377–399. doi: 10.1002/sim.4067.PubMedCrossRefGoogle Scholar
  112. Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge, MA: MIT.Google Scholar
  113. Yeung, W. J., Linver, M. R., & Brooks-Gunn, J. (2002). How money matters for young children’s development: Parental investment and family processes. Child Development, 73(6), 1861–1879. doi: 10.2307/3696422.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wiebke Schulz
    • 1
  • Reinhard Schunck
    • 2
  • Martin Diewald
    • 1
  • Wendy Johnson
    • 3
  1. 1.Department of SociologyBielefeld UniversityBielefeldGermany
  2. 2.GESIS TrainingGESIS – Leibniz Institute for Social SciencesKölnGermany
  3. 3.Department of Psychology, Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK

Personalised recommendations