Journal of Youth and Adolescence

, Volume 46, Issue 8, pp 1821–1838 | Cite as

Does Everyone’s Motivational Beliefs about Physical Science Decline in Secondary School?: Heterogeneity of Adolescents’ Achievement Motivation Trajectories in Physics and Chemistry

  • Ming-Te Wang
  • Angela Chow
  • Jessica Lauren Degol
  • Jacquelynne Sue Eccles
Empirical Research
  • 311 Downloads

Abstract

Students’ motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents’ motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; Mages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents’ ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students’ motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.

Keywords

Expectancy-value theory Science motivation Physics and chemistry Ability self-concept Task values 

References

  1. Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.CrossRefGoogle Scholar
  2. Archambault, I., Eccles, J. S., & Vida, M. N. (2010). Ability self-concepts and subjective value in literacy: Joint trajectories from grades 1 through 12. Journal of Educational Psychology, 102, 804–816. doi:10.1037/a0021075.CrossRefGoogle Scholar
  3. Archambault, I., Janosz, M., Morizot, J., & Pagani, L. (2009). Adolescent behavioral, affective, and cognitive engagement in school: Relationship to dropout. Journal of School Health, 79, 408–415. doi:10.1111/j.1746-1561.2009.00428.x.CrossRefPubMedGoogle Scholar
  4. Asparouhov, T., & Muthén, B. (2013). Auxiliary variables in mixture modeling: A 3-step approach using MPlus. MPlus Web Notes: No. 14.Google Scholar
  5. Assor, A., & Connell, J. P. (1992). The validity of students’ self-reports as measures of performance affecting self-appraisals. In D. H. Schunk, & J. L. Meece (Eds.), Student perceptions in the classroom (pp. 25–47). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  6. Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. Journal of School Psychology, 48, 5–37. doi:10.1016/j.jsp.2009.10.001.CrossRefPubMedGoogle Scholar
  7. Bennett, J., & Hogarth, S. (2009). Would you want to talk to a scientist at a party? High school students’ attitudes to school science and to science. International Journal of Science Education, 31, 1975–1998. doi:10.1080/09500690802425581.CrossRefGoogle Scholar
  8. Denissen, J. J., Zarrett, N. R., & Eccles, J. S. (2007). I like to do it, I’m able, and I know I am: Longitudinal couplings between domain‐specific achievement, self‐concept, and interest. Child Development, 78, 430–447. doi:10.1111/j.1467-8624.2007.01007.x.CrossRefPubMedGoogle Scholar
  9. Diallo, T. M., Morin, A. J., & Lu, H. (2016a). Impact of misspecifications of the latent variance–covariance and residual matrices on the class enumeration accuracy of growth mixture models. Structural Equation Modeling, 23, 507–531.CrossRefGoogle Scholar
  10. Diallo, T. M. O, Morin, A. J. S., Lu, H. (2016b). The impact of total and partial inclusion or exclusion of active and inactive time invariant covariates in growth mixture models. Psychological Methods. doi:10.1037/met0000084.
  11. Eccles, J. S. (1999). The development of children ages 6 to 14. The Future of Children: When School is Out, 9, 30–44. doi:10.2307/1602703.CrossRefGoogle Scholar
  12. Eccles, J. S. (2009). Who am I and what am I going to do with my life? Personal and collective identities as motivators of action. Educational Psychologist, 44, 78–89.CrossRefGoogle Scholar
  13. Eccles, J. S., Lord, S., & Midgley, C. (1991). What are we doing to early adolescents? The impact of educational contexts on early adolescents. American Journal of Education, 99, 521–542. doi:10.1086/443996.CrossRefGoogle Scholar
  14. Eccles, J. S., Wigfield, A., & Blumenfeld, P. C. (1984). Psychological predictors of competence development. Bethesda, MD: National Institute of Child Health and Human Development. (Grant NO. 2 R01 HD17553-01).Google Scholar
  15. Eccles, J. S., Wigfield, A., Harold, R. D., & Blumenfeld, P. (1993). Age and gender differences in children’s self- and task perceptions during elementary school. Child Development, 64, 830–847. doi:10.1111/j.1467-8624.1993.tb02946.x.CrossRefPubMedGoogle Scholar
  16. Eccles, J. S., Wigfield, A., & Schiefele, U. (1998). Motivation to succeed. In N. Eisenberg (Ed.), Handbook of child psychology, vol. 3 of social, emotional, and personality development (pp. 1017–1095). Hoboken, NJ: Wiley.Google Scholar
  17. Farenga, S. J., & Joyce, B. A. (1999). Intentions of young students to enroll in science courses in the future: An examination of gender differences. Science Education, 83, 55–75.CrossRefGoogle Scholar
  18. Ferry, T. R., Fouad, N. A., & Smith, P. L. (2000). The role of family context in a social cognitive model for career-related choice behavior: A math and science perspective. Journal of Vocational Behavior, 57, 348–364. doi:10.1006/jvbe.1999.1743.CrossRefGoogle Scholar
  19. Fredricks, J. A., & Eccles, J. S. (2002). Children’s competence and value beliefs from childhood through adolsecence: Growth trajectories in two male-sex-typed domains. Developmental Psychology, 38, 519–533. doi:10.1037//0012-1649.38.4.519.CrossRefPubMedGoogle Scholar
  20. Gottfried, A. E., Flemisng, J. S., & Gottfried, A. W. (2001). Continuity of academic intrinsic motivation from childhood through late adolescence: A longitudinal study. Journal of Educational Psychology, 93, 3–13. doi:10.1037/0022-0663.93.1.3.CrossRefGoogle Scholar
  21. Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., Oliver, P. H., & Guerin, D. W. (2007). Multivariate latent change modeling of developmental decline in academic intrinsic motivation and achievement: Childhood through adolescence. International Journal of Behavioral Development, 31, 317–327. doi:10.1177/0165025407077752.CrossRefGoogle Scholar
  22. Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., & Oliver, P. H. (2009). A latent curve model of parental motivational practices and developmental decline in math and science academic intrinsic motivation. Journal of Educational Psychology, 101, 729–739.CrossRefGoogle Scholar
  23. Hanson, S. L. (2007). Success in science among young African American women: The role of minority families. Journal of Family Issues, 28, 3–33. doi:10.1177/0192513X06292694.CrossRefGoogle Scholar
  24. Havard, N. (1996). Student attitudes to studying A-level sciences. Public Understanding of Science, 5, 321–330.CrossRefGoogle Scholar
  25. Huber, S. A., Häusler, J., Jurik, V., & Seidel, T. (2015). Self-underestimating students in physics instruction: Development over a school year and its connection to internal learning processes. Learning and Individual Differences, 43, 83–91.CrossRefGoogle Scholar
  26. Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J. S., & Wigfield, A. (2002). Changes in children’s self-competence and values: Gender and domain differences across grades one through twelve. Child Development, 73, 509–527. doi:10.1111/1467-8624.00421.CrossRefPubMedGoogle Scholar
  27. Jodl, K. M., Michael, A., Malanchuk, O., Eccles, J. S., & Sameroff, A. (2001). Parents’ roles in shaping early adolescents’ occupational aspirations. Child Development, 72, 1247–1265.CrossRefPubMedGoogle Scholar
  28. Larose, S., Ratelle, C. F., Guay, F., Senécal, C., & Harvey, M. (2006). Trajectories of science self-efficacy beliefs during the college transition and academic and vocational adjustment in science and technology programs. Educational Research and Evaluation, 12, 373–393.CrossRefGoogle Scholar
  29. Lau, S., & Roeser, R. W. (2002). Cognitive abilities and motivational processes in high school students’ situational engagement and achievement in science. Educational Assessment, 8, 139–162. doi:10.1207/S15326977EA0802_04.CrossRefGoogle Scholar
  30. Li, Y., & Lerner, R. M. (2011). Trajectories of school engagement during adolescence: Implications for grades, depression, delinquency, and substance use. Developmental Psychology, 47, 233–247. doi:10.1037/a0021307.CrossRefPubMedGoogle Scholar
  31. Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 1198–1202.CrossRefGoogle Scholar
  32. Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778. doi:10.1093/biomet/88.3.767.CrossRefGoogle Scholar
  33. Lyons, T. (2006). The puzzle of falling enrolments in physics and chemistry courses: Putting some pieces together. Research in science education, 36, 285–311.CrossRefGoogle Scholar
  34. Maltese, A. V., Melki, C. S., & Wiebke, H. L. (2014). The nature of experiences responsible for the generation and maintenance of interest in STEM. Science Education, 98, 937–962.CrossRefGoogle Scholar
  35. Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32, 669–685. doi:10.1080/09500690902792385.CrossRefGoogle Scholar
  36. Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among US students. Science Education, 95, 877–907. doi:10.1002/sce.20441.CrossRefGoogle Scholar
  37. Marsh, H. W., Hau, K. T., & Grayson, D. (2005). Goodness of fit evaluation in structural equation modeling. In A. Maydeu-Olivares, & J. McArdle (Eds.), Contemporary psychometrics. A festschrift for Roderick P. McDonald (pp. 275–340). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  38. Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S. (2009). Classical latent profile analysis of academic self-concept dimensions: synergy of person- and variable-centered approaches to theoretical models of self-concept. Structural Equation Modeling, 16, 191–225. doi:10.1080/10705510902751010.CrossRefGoogle Scholar
  39. Marsh, H. W., & Yeung, A. S. (1997). Causal effects of academic self-concept on academic achievement: Structural equation models of longitudinal data. Journal of Educational Psychology, 89, 41–54. doi:10.1037/0022-0663.89.1.41.CrossRefGoogle Scholar
  40. McLachlan, G., & Peel, D. (2000). Finite mixture models. New York, NY: Wiley.CrossRefGoogle Scholar
  41. Muthén, B. (2000). Latent variable mixture modeling. In G. A. Marcoulides, & R. E. Schumacker (Eds.), Advanced structural equation modeling: New developments and techniques (pp. 1–33). Hillsdale, NJ: Erlbaum.Google Scholar
  42. Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In L. M. Collins, & A. Sayer (Eds.), New methods for the analysis of change (pp. 291–322). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  43. Muthén, B. (2004). Latent variables analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345–368). Newbury Park, CA: Sage.Google Scholar
  44. Muthén, L., & Muthén, B. (2015). Mplus (Version 7.31). Los Angeles, CA: Muthén & Muthén.Google Scholar
  45. Nagengast, B., & Marsh, H. W. (2012). Big fish in little ponds aspire more: Mediation and cross-cultural generalizability of school-average ability effects on self-concept and career aspirations in science. Journal of Educational Psychology, 104, 1033–1053.CrossRefGoogle Scholar
  46. Neathery, M. F. (1997). Elementary and secondary students’ perceptions toward science: Correlations with gender, ethnicity, ability, grade, and science achievement. Electronic Journal of Science Education, 2, 3–11.Google Scholar
  47. Nylund, K., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569. doi:10.1080/10705510701575396.CrossRefGoogle Scholar
  48. Osborne, J. F., & Collins, S. (2000). Pupils’ and parents’ views of the school science curriculum. London: King’s College London.Google Scholar
  49. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079.CrossRefGoogle Scholar
  50. Pajares, F. (2005). Gender differences in mathemtaics self-efficacy beliefs. In A. M. Gallagher, & J. C. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 294–315). New York, NY: Cambridge University Press.Google Scholar
  51. Phillips, D. A., & Zimmerman, M. (1990). The developmetnal course of perceived competence and incompetence among competent children. In R. J. Sternberg, & J. Kolligian (Eds.), Competence considered (pp. 41–66). New Haven, CT: Yale University Press.Google Scholar
  52. Ratelle, C. F., Guay, F., Larose, S., & Senécal, C. (2004). Family correlates of trajectories of academic motivation during a school transition: A semiparametric group-based approach. Journal of Educational Psychology, 96, 743–754. doi:10.1037/0022-0663.96.4.743.CrossRefGoogle Scholar
  53. Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science Education, 96, 411–427.CrossRefGoogle Scholar
  54. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  55. Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2005). Parents’ socializing behaivor and children’s participation in math, science, and computer out-of-school activities. Applied Developmental Science, 9, 14–30. doi:10.1207/s1532480xads0901_3.CrossRefGoogle Scholar
  56. Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology., 42, 70–83. doi:10.1037/0012-1649.42.1.70.CrossRefPubMedGoogle Scholar
  57. Singh, K., Granville, M., & Dika, S. (2002). Mathematics and science achievement: Effects of motivation, interest, and academic engagement. The Journal of Educational Research, 95, 323–332. doi:10.1080/00220670209596607.CrossRefGoogle Scholar
  58. Stipek, D., & Mac Iver, D. (1989). Developmental change in children’s assessment of intellectual competence. Child Development, 60, 521–538. doi:10.2307/1130719.CrossRefGoogle Scholar
  59. Wang, M.-T. (2012). Educational and career interests in math: A longitudinal examination of the links between classroom environment, motivational beliefs, and interests. Developmental Psychology, 48, 1643–1657. doi:10.1037/a0027247.CrossRefPubMedGoogle Scholar
  60. Wang, M.-T., & Degol, J. (2014). Staying engaged: Knowledge and research needs in student engagement. Child Development Perspectives, 8, 137–143. doi:10.1111/cdep.12073.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang, M.-T., & Degol, J. (2016). Gender gap in STEM: Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 28, 1–22. doi:10.1007/s10648-015-9355-x.CrossRefGoogle Scholar
  62. Wang, M.-T., Degol, J. L., & Ye, F. (2015). Math achievement is important, but task values are critical too: Examining the intellectual and motivational factors leading to gender disparities in STEM careers. Frontiers in Psychology, 6, 1–9. doi:10.3389/fpsyg.2015.00036.Google Scholar
  63. Wang, M.-T., Fredricks, J., Ye, F., Hofkens, T., & Schall, J. (2016). The math and science engagement scale: Development, validation, and psychometric properties. Learning and Instruction, 43, 16–26.CrossRefGoogle Scholar
  64. Wang, M.-T., & Peck, S. C. (2013). Adolescent educational success and mental health vary across school engagement profiles. Developmental Psychology, 49, 1266–1276. doi:10.1037/a0030028.CrossRefPubMedGoogle Scholar
  65. Wigfield, A., & Eccles, J. S. (1994). Children’s competence beliefs, achievement values, and general self-esteem change across elementary and middle school. The Journal of Early Adolescence, 14, 107–138. doi:10.1177/027243169401400203.CrossRefGoogle Scholar
  66. Wigfield, A., & Eccles, J. S. (2002). The development of competence beliefs, expectancies for success, and achievement values from childhood through adolescence. In A. Wigfield, & J. S. Eccles (Eds.), Development of achievement motivation (pp. 91–120). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  67. Wigfield, A., Eccles, J. S., Schiefele, U., Roeser, R., Davis-Kean, P. (2006). Development of achievement motivation. In W. Damon, & R. M. Lerner (Series Eds.) & N. Eisenberg (Vol. Ed.) Handbook of child psychology, vol. 3. Social, emotional, and personality development (6th edn., pp. 933–1002). Hoboken, NJ: Wiley.Google Scholar
  68. Wigfield, A., et al. (1997). Change in children’s competence beliefs and subjective task values across the elementary school years: A three-year study. Journal of Educational Psychology, 89, 451–469. doi:10.1037/0022-0663.89.3.451.CrossRefGoogle Scholar
  69. Wilkins, J. L. (2004). Mathematics and science self-concept: An international investigation. The Journal of Experimental Education, 72, 331–346. doi:10.3200/JEXE.72.4.331-346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ming-Te Wang
    • 1
  • Angela Chow
    • 2
  • Jessica Lauren Degol
    • 1
  • Jacquelynne Sue Eccles
    • 3
  1. 1.University of PittsburghPittsburghUSA
  2. 2.Indiana UniversityBloomingtonUSA
  3. 3.University of California-IrvingIrvineUSA

Personalised recommendations