Journal of Youth and Adolescence

, Volume 42, Issue 6, pp 848–860 | Cite as

The Age–Crime Curve in Adolescence and Early Adulthood is Not Due to Age Differences in Economic Status

  • Elizabeth P. Shulman
  • Laurence D. Steinberg
  • Alex R. Piquero
Empirical Research

Abstract

One of the most consistent findings in developmental criminology is the “age–crime curve”—the observation that criminal behavior increases in adolescence and decreases in adulthood. Recently, Brown and Males (Justice Policy J 8:1–30, 2011) conducted an analysis of aggregate arrest, poverty, and population data from California and concluded that the widely-observed adolescent peak in rates of offending is not a consequence of developmental factors, but rather an artifact of age differences in economic status. Youngsters, they argue, offend more than adults because they are poorer than adults. The present study challenges Brown and Males’ proposition by analyzing data from the National Longitudinal Study of Youth (NLSY97; N = 8,984; 51 % female; 26 % Black, 21 % Hispanic, 52 % non-Black, non-Hispanic; ages 12–18 at Wave 1), which collected measures of criminal behavior and economic status at multiple time points. Consistent with scores of other studies, we find that criminal offending peaks in adolescence, even after controlling for variation in economic status. Our findings both counter Brown and Males’ claim that the age–crime curve is illusory and underscore the danger of drawing inferences about individual behavior from analysis of aggregated data.

Keywords

Age–crime curve Juvenile offending Crime Developmental Longitudinal 

References

  1. Blumstein, A., Cohen, J., Roth, J. A., & Visher, C. (Eds.). (1986). Criminal careers and “career criminals” (Vol. 1). Washington, DC: National Academy Press.Google Scholar
  2. Braithwaite, J. (1989). Crime, shame and reintegration. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  3. Brame, R., Fagan, J., Piquero, A. R., Schubert, C. A., & Steinberg, L. (2004). Criminal careers of serious delinquents in two cities. Youth Violence and Juvenile Justice, 2, 256–272.PubMedCrossRefGoogle Scholar
  4. Brown, E., & Males, M. (2011). Does age or poverty level best predict criminal arrest and homicide rates? A preliminary investigation. Justice Policy Journal, 8, 1–30.Google Scholar
  5. Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28, 62–77.PubMedCrossRefGoogle Scholar
  6. Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14(2), F1–F10.PubMedGoogle Scholar
  7. Ellis, B. J., Del Giudice, M., Dishion, T. J., Figueredo, A. J., Gray, P., Griskevicius, V., et al. (2012). The evolutionary basis of risky adolescent behavior: Implications for science, policy, and practice. Developmental Psychology, 48(3), 598–623.PubMedCrossRefGoogle Scholar
  8. Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36(3), 299–312.PubMedCrossRefGoogle Scholar
  9. Farnworth, M., Thornberry, T. P., Krohn, M. D., & Lizotte, A. J. (1994). Measurement in the study of class and delinquency: Integrating theory and research. Journal of Research in Crime and Delinquency, 31, 32–61.CrossRefGoogle Scholar
  10. Farrington, D. P. (1986). Age and crime. In M. Tonry & N. Morris (Eds.), Crime and justice: An annual review of research (Vol. 7, pp. 189–250). Chicago: University of Chicago Press.Google Scholar
  11. Farrington, D. P. (1998). Individual differences and offending. In M. Tonry (Ed.), The handbook of crime and punishment (pp. 241–268). New York, NY: Oxford University Press.Google Scholar
  12. Farrington, D. P., Piquero, A. R., & Jennings, W. G. (2013). Offending from childhood to late middle age: Recent results from the Cambridge study in delinquent development. New York: Springer.CrossRefGoogle Scholar
  13. Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35(3), 709–730.PubMedCrossRefGoogle Scholar
  14. Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision-making in adolescence and adulthood: An experimental study. Developmental Psychology, 41(4), 625–635.PubMedCrossRefGoogle Scholar
  15. Giedd, J. N. (2012). The digital revolution and adolescent brain evolution. Journal of Adolescent Health, 51(2), 101–105.PubMedCrossRefGoogle Scholar
  16. Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728–734.PubMedCrossRefGoogle Scholar
  17. Gottfredson, M. R., & Hirschi, T. (1990). A general theory of crime. Stanford, CA: Stanford University Press.Google Scholar
  18. Hirschi, T., & Gottfredson, M. R. (1983). Age and the explanation of crime. American Journal of Sociology, 89, 552–584.CrossRefGoogle Scholar
  19. Kirk, D. S. (2008). The neighborhood context of racial and ethnic disparities in arrest. Demography, 45, 55–77.PubMedCrossRefGoogle Scholar
  20. Lauritsen, J. L. (1999). Limitations in the use of longitudinal self-report data: A comment. Criminology, 37, 687–702.CrossRefGoogle Scholar
  21. Males, M. (2009). Does the adolescent brain make risk taking inevitable? A skeptical appraisal. Journal of Adolescent Research, 24, 3–20.CrossRefGoogle Scholar
  22. Moffitt, T. E. (1993). ‘Life-course-persistent’ and ‘adolescence-limited’ antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674–701.PubMedCrossRefGoogle Scholar
  23. Moffitt, T. E., Caspi, A., Rutter, M., & Silva, P. A. (2001). Sex differences in antisocial behaviour: Conduct disorder, delinquency, and violence in the Dunedin Longitudinal Study. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  24. Monahan, K. C., Steinberg, L., & Cauffman, E. (2009). Affiliation with antisocial peers, susceptibility to peer influence, and antisocial behavior during the transition to adulthood. Developmental Psychology, 45, 1520–1530.PubMedCrossRefGoogle Scholar
  25. Osgood, D. W., Wilson, J. K., Bachman, J. G., O’Malley, P. M., & Johnston, L. D. (1996). Routine activities and individual deviant behavior. American Sociological Review, 61, 635–655.CrossRefGoogle Scholar
  26. Piquero, A. R. (2008). Disproportionate minority contact. The Future of Children, 18, 59–79.PubMedCrossRefGoogle Scholar
  27. Piquero, A. R., Farrington, D. P., & Blumstein, A. (2003). The criminal career paradigm. In M. Tonry (Ed.), Crime and justice: A review of research (Vol. 30, pp. 359–506). Chicago: University of Chicago Press.Google Scholar
  28. Piquero, A. R., Monahan, K. C., Glasheen, C., Schubert, C. A., & Mulvey, E. (2012). Does time matter? Comparing trajectory concordance and covariate association using time-based and age-based assessments. Crime & Delinquency. doi:10.1177/0011128712459491.Google Scholar
  29. Quetelet, A. (1831). Research on the propensity to crime of different ages. Brussels: Hayez.Google Scholar
  30. Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision-making: Implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7(1), 1–44.Google Scholar
  31. Robinson, W. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351–357.CrossRefGoogle Scholar
  32. Sampson, R. J., & Laub, J. H. (2003). Life-course desisters? Trajectories of crime among delinquent boys followed to age 70. Criminology, 41, 555–592.CrossRefGoogle Scholar
  33. Sampson, R. J., Morenoff, J. D., & Raudenbush, S. (2005). Social anatomy of racial and ethnic disparities in violence. American Journal of Public Health, 95, 224–232.PubMedCrossRefGoogle Scholar
  34. Sampson, R. J., & Wilson, W. J. (1995). Toward a theory of race, crime, and urban inequality. In J. Hagan & R. Peterson (Eds.), Crime and inequality (pp. 37–56). Stanford, CA: Stanford University Press.Google Scholar
  35. Shulman, E. P., & Cauffman, E. (2013). Deciding in the dark: Age differences in intuitive risk judgment. Developmental Psychology. doi:10.1037/a0032778.
  36. Smith, D. A. (1986). The neighborhood context of police behavior. In A. Reiss & M. Tonry (Eds.), Crime and justice (Vol. 8, pp. 313–341). Chicago, IL: University of Chicago Press.Google Scholar
  37. Somerville, L. H. (2013). The teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Science, 22(2), 129–135.CrossRefGoogle Scholar
  38. Steffensmeier, D. J., Allan, E. A., Harer, M. D., & Streifel, C. (1989). Age and the distribution of crime. American Journal of Sociology, 94, 803–831.CrossRefGoogle Scholar
  39. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78–106.PubMedCrossRefGoogle Scholar
  40. Sweeten, G., Piquero, A. R., & Steinberg, L. (2013). Age and the explanation of crime, revisited. Journal of Youth and Adolescence. doi:10.1007/s10964-013-9926-4.
  41. Thornberry, T. P., & Krohn, M. D. (2002). Comparison of self-report and official data for measuring crime. In J. V. Pepper & C. V. Petrie (Eds.), Measurement problems in criminal justice research: Workshop summary (pp. 43–94). Washington, DC: National Academies Press.Google Scholar
  42. U. S. Department of Health and Human Services (2010). The 1997 HHS Guidelines. Retrieved from: http://aspe.hhs.gov/poverty/97poverty.htm.
  43. Warr, M. (1993). Age, peers, and delinquency. Criminology, 31, 17–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elizabeth P. Shulman
    • 1
    • 2
  • Laurence D. Steinberg
    • 3
  • Alex R. Piquero
    • 4
  1. 1.Psychology DepartmentUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PsychologyTemple UniversityPhiladelphiaUSA
  3. 3.Department of PsychologyTemple UniversityPhiladelphiaUSA
  4. 4.School of Economic, Political, and Policy SciencesUniversity of Texas at DallasRichardsonUSA

Personalised recommendations