Skip to main content

The Origins of the Apple in Central Asia

Abstract

The study of agricultural origins has been revolutionized by genomic science. Whole genome sequencing of plant domesticates opens a door to multiple new approaches by which the timing, nature, and geography of human selective pressures on the evolution of domesticated species might be detected. These new scientific pathways greatly enhance understandings of domestication as an evolutionary process, but they also renew long-standing questions for archaeologists about whether and how to perceive human agency in the ancient past of human–plant interspecies relations. Due to its importance as a global commercial crop, the apple (Malus x domestica Borkh.) was the tenth plant genome to be successfully sequenced in 2010. The genomic record of the apple reveals a deep history of human–plant co-evolution by unconscious selection, domestication through hybridization, and a phylogeographic origin in Central Asia. The first two of these insights document a domesticate that has evolved from protracted and unconscious processes, but the third—the identification of the progenitor Malus sieversii (Ledeb.) M. Roem. in Central Asia, and the necessary corollary that its hybridization arose along the ‘Silk Road’—invites further discussion about the roles of human agency and intentionality in the initial stages of plant domestication. This paper presents a review of apple domestication studies in archaeology and genetics and considers the problematic of Central Asia and the Silk Road in the current paradigm shift of agricultural origins research.

This is a preview of subscription content, access via your institution.

Fig. 1

Source: Hansen/UMD/Google/USGS/NASA (Color figure online)

Fig. 2
Fig. 3

Source: http://ecotope.org/products/datasets/used_planet/ (Color figure online)

Data Availability

Not applicable.

References

  1. Abbo, S., & Gopher, A. (2017). Near Eastern plant domestication: A history of thought. Trends in Plant Science, 22(6), 491–511.

  2. Abbo, S., Gopher, A., & Lev-Yadun, S. (2015). Fruit domestication in the Near East. Plant Breeding Reviews, 39, 325–377.

  3. Abbo, S., Lev-Yadun, S., & Gopher, A. (2012). Plant domestication and crop evolution in the Near East: On events and processes. Critical Reviews in Plant Sciences, 31(3), 241–257.

  4. Abbo, S., Lev-Yadun, S., & Gopher, A. (2014). The ‘human mind’ as common denominator in plant domestication. Journal of Experimental Botany, 65(8), 1917–1920.

    Article  Google Scholar 

  5. Abbo, S., van Oss, R., Gopher, A., Saranga, Y., Ofner, I., & Peleg, Z. (2013). Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends in Plant Science, 19(6), 351–360.

    Article  Google Scholar 

  6. Allaby, R., & Brown, T. (2003). AFLP data and the origins of domesticated crops. Genome, 46(3), 448–453.

    Article  Google Scholar 

  7. Allaby, R., Fuller, D., & Brown, T. (2008). The genetic expectations of a protracted model for the origins of domesticated crops. Proceedings of the National Academy of Sciences, 105(37), 13982–13986.

    Article  Google Scholar 

  8. Allaby, R., Ware, R., & Kistler, L. (2019). A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evolutionary Applications, 12(1), 29–37.

    Article  Google Scholar 

  9. Amirchakhmaghi, N., Yousefzadeh, H., Hosseinpour, B., Espahbodi, K., Aldaghi, M., & Cornille, A. (2018). First insight into genetic diversity and population structure of the Caucasian wild apple (Malus orientalis Uglitzk.) in the Hyrcanian forest (Iran) and its resistance to apple scab and powdery mildew. Genetic Resources and Crop Evolution, 65(4), 1255–1268.

  10. Antolín, F., Bleicher, N., Brombacher, C., Kühn, M., Steiner, B. L., & Jacomet, S. (2016). Quantitative approximation to large-seeded wild fruit use in a late Neolithic lake dwelling: New results from the case study of layer 13 of Parkhaus Opéra in Zürich (Central Switzerland). Quaternary International, 404, 56–68.

  11. Armstrong Oma, K. (2010). Between trust and domination: Social contracts between humans and animals. World Archaeology, 42(2), 175–187.

    Article  Google Scholar 

  12. Ball, W. (2019). ‘Band wagon and gravy train’: Uses and abuses along the Silk Road. Afghanistan, 2(2), 171–194.

    Article  Google Scholar 

  13. Beer, R., Kaiser, F., Schmidt, K., Ammann, B., Carraro, G., Grisa, E., & Tinner, W. (2008). Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin? Quaternary Science Reviews, 27(5–6), 621–632.

    Article  Google Scholar 

  14. Bennett, J. (2010). Vibrant matter: A political ecology of things. Duke University Press.

    Book  Google Scholar 

  15. Berger, L. (2020). Is the ethnography of mushrooming the royal pathway to the anthropology of the Capitalocene? Focaal – Journal of Global and Historical Anthropology, 87, 104–121.

  16. Birch, S. E. P. (Ed.). (2018). Multispecies archaeology. Routledge.

    Google Scholar 

  17. Bird Rose, D., van Dooren, T., Chrulew, M., Cooke, S., Kearnes, M., & O’Gorman, E. (2012). Thinking through the environment: Unsettling the humanities. Environmental Humanities, 1, 1–5.

    Article  Google Scholar 

  18. Boivin, N., Zeder, M., Fuller, D., Crowther, A., Larson, G., Erlandson, J., et al. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences, 113(23), 6388–6396.

    Article  Google Scholar 

  19. Boyd, B. (2018). An archaeological telling of multispecies co-inhabitation: Comments on the origins of agriculture and domestication narrative in Southwest Asia. In S. Birch (Ed.), Multispecies archaeology (pp. 251–270). Routledge.

    Chapter  Google Scholar 

  20. Braidotti, R. (2016). Posthuman critical theory. In D. Banerji & M. R. Paranjape (Eds.), Critical posthumanism and planetary futures (pp. 13–32). Springer.

    Chapter  Google Scholar 

  21. Brite, E., Kidd, F., Betts, A., & Negus Cleary, M. (2017). Millet cultivation in Central Asia: A response to Miller et al. The Holocene, 27(9), 1415–1422.

    Article  Google Scholar 

  22. Brown, T. (2019). Is the domestication bottleneck a myth? Nature Plants, 5(4), 337.

    Article  Google Scholar 

  23. Brown, T., Jones, M., Powell, W., & Allaby, R. (2009). The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology and Evolution, 24(2), 103–109.

    Article  Google Scholar 

  24. Bugos, G., & Kevles, D. (1992). Plants as intellectual property: American practice, law, and policy in world context. Osiris, 7, 74–104.

    Article  Google Scholar 

  25. Buttenshøn, R. M., & Buttenshøn, J. (1999). Population dynamics of Malus sylvestris stands in grazed and ungrazed, semi-natural grasslands and fragmented woodlands in Mols Bjerge, Denmark. Annales Botanici Fennici, 35, 233–246.

    Google Scholar 

  26. Chakrabarty, D. (2009). The climate of history: Four theses. Critical Inquiry, 35(2), 197–222.

    Article  Google Scholar 

  27. Chang, C. (2017). Inner Asian pastoralism in the Iron Age: The Talgar case, Southeastern Kazakhstan. Nomadic Peoples, 21(2), 173–190.

  28. Chang, C. (2018). Rethinking prehistoric Central Asia: Shepherds, farmers, and nomads. Routledge.

    Google Scholar 

  29. Chang, C., Benecke, N., Grigoriev, F. P., Rosen, A. M., & Tourtellotte, P. A. (2003). Iron Age society and chronology in south-east Kazakhstan. Antiquity, 77(296), 298–312.

  30. Chang, C., & Tourtellotte, P. (1998). The role of agro-pastoralism in the evolution of steppe culture in the Semirechye Area of southern Kazakhstan during the Saka/Wusun Period (600 BCE–400 CE). In V. Mair (Ed.), The Bronze Age and Early Iron Age peoples of Eastern Central Asia, 1 (pp. 264–279). Institute for the Study of Man.

    Google Scholar 

  31. Coart, E., Van Glabeke, S., De Loose, M., Larsen, A., & Roldán-Ruiz, I. (2006). Chloroplast diversity in the genus Malus: New insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Molecular Ecology, 15(8), 2171–2182.

    Article  Google Scholar 

  32. Cornille, A., Antolín, F., Garcia, E., Vernesi, C., Fietta, A., Brinkkemper, , et al. (2019). A multifaceted overview of apple tree domestication. Trends in Plant Science, 24(8), 770–782.

    Article  Google Scholar 

  33. Cornille, A., Feurtey, A., Gélin, U., Ropars, J., Misvanderbrugge, K., Gladieux, P., & Giraud, T. (2015). Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: A basis for conservation and breeding programs in apples. Evolutionary Applications, 8(4), 373–384.

    Article  Google Scholar 

  34. Cornille, A., Giraud, T., Smulders, M., Roldán-Ruiz, I., & Gladieux, P. (2014). The domestication and evolutionary ecology of apples. Trends in Genetics, 30(2), 57–65.

    Article  Google Scholar 

  35. Cornille, A., Gladieux, P., & Giraud, T. (2013). Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evolutionary Applications, 6(5), 737–748.

    Article  Google Scholar 

  36. Cornille, A., Gladieux, P., Smulders, M., Roldán-Ruiz, I., Laurens, F., Le Cam, B., et al. (2012). New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genetics, 8(5), e1002703.

    Article  Google Scholar 

  37. Deleuze, G., & Guattari, F. (1987). A thousand plateaus: Capitalism and schizophrenia. Athlone Press.

    Google Scholar 

  38. Denham, T., Haberle, S., Lentfer, C., Fullagar, R., Field, J., Therin, M., et al. (2003). Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science, 301(5630), 189–193.

    Article  Google Scholar 

  39. Diamond, J. (2002). Evolution, consequences, and future of plant and animal domestication. Nature, 418, 700–707.

    Article  Google Scholar 

  40. Didur, J. (2003). Re-embodying technoscientific fantasies: Posthumanism, genetically modified foods, and the colonization of life. Cultural Critique, 53, 98–115.

    Article  Google Scholar 

  41. Djamali, M., Ponel, P., Andrieu-Ponel, V., de Beaulieu, J., Guibal, F., Miller, N., Ramezani, E., Berberian, M., Lahijani, H., & Lak, R. (2010). Notes on arboricultural and agricultural practices in ancient Iran based on new pollen evidence. Paléorient, 36(2), 175–188.

    Article  Google Scholar 

  42. Duan, N., Bai, Y., Sun, H., Wang, N., Ma, Y., Li, M., et al. (2017). Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 8(1), 1–11.

    Article  Google Scholar 

  43. Dzhangaliev, A. (2003). The wild apple tree of Kazakhstan. Horticultural Reviews, 29, 63–303.

    Google Scholar 

  44. Dzhangaliev, A., Salova, T., & Turekhanova, P. (2003). The wild fruit and nut plants of Kazakhstan. Horticultural Reviews, 29, 305–371.

    Google Scholar 

  45. Ellis, E., Kaplan, J., Fuller, D., Vavrus, S., Goldewijk, K., & Verburg, P. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences, 110(20), 7978–7985.

    Article  Google Scholar 

  46. Ellison, R., Renfrew, J., Brothwell, D., & Seely, N. (1978). Some food offerings from Ur, excavated by Sir Leonard Wooley, and previously unpublished. Journal of Archaeological Science, 5, 167–177.

    Article  Google Scholar 

  47. Engelbrecht, T. (1916). Über die entstehung einiger feldmäßig angebauter kulturpflanzen. Geographische Zeitschrift, 22, 328–334.

    Google Scholar 

  48. Fakour, M. (2012). Garden i. Achaemenid period. Encyclopaedia Iranica, 3, 297–298.

    Google Scholar 

  49. Flachs, A. (2019). Cultivating knowledge: Biotechnology, sustainability, and the human cost of cotton capitalism in India. University of Arizona Press.

    Google Scholar 

  50. Forsline, P., Aldwinckle, H., Dickson, E., Luby, J., & Hokanson, S. (2003). Collection, maintenance, characterization, and utilization of wild apples in Kazakhstan. Horticultural Reviews, 29, 1–61.

    Google Scholar 

  51. Forte, A., Ignatov, A., Ponomarenko, V., Dorokhov, D., & Savelyev, N. (2002). Phylogeny of the Malus (apple tree) species, inferred from the morphological traits and molecular DNA analysis. Russian Journal of Genetics, 38(10), 1150–1161.

    Article  Google Scholar 

  52. Frachetti, M. (2008). Pastoralist landscapes and social interaction in Bronze Age Eurasia. University of California Press.

    Book  Google Scholar 

  53. Frachetti, M. (2012). Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Current Anthropology, 53(1), 2–38.

    Article  Google Scholar 

  54. Frachetti, M. (2015). Nomadic mobility, migration, and environmental pressure in Eurasian Prehistory. In M. Frachetti & R. Spengler (Eds.), Mobility and ancient society in Asia and the Americas (pp. 7–16). Springer.

    Chapter  Google Scholar 

  55. Frachetti, M., & Benecke, N. (2009). From sheep to (some) horses: 4500 years of herd structure at the pastoralist settlement of Begash (south-eastern Kazakhstan). Antiquity, 83(322), 1023–1037.

    Article  Google Scholar 

  56. Frachetti, M. D., Benecke, N., Mar’yashev, A. N., & Doumani, P. N. (2010a). Eurasian pastoralists and their shifting regional interactions at the steppe margin: Settlement history at Mukri, Kazakhstan. World Archaeology, 42(4), 622–646.

  57. Frachetti, M., & Mar’yashev, A. (2007). Long-term occupation and seasonal settlement of eastern Eurasian pastoralists at Begash, Kazakhstan. Journal of Field Archaeology, 32(3), 221–242.

  58. Frachetti, M. D., Smith, C. E., Traub, C. M., & Williams, T. (2017). Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature, 543(7644), 193–198.

    Article  Google Scholar 

  59. Frachetti, M. D., Spengler, R. N., Fritz, G. J., & Mar’yashev, A. N. (2010b). Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity, 84(326), 993–1010.

  60. Fredengren, C. (2018a). Archaeological posthumanities: Feminist re-invention of science and material pasts. In C. Åsberg & R. Braidotti (Eds.), A feminist companion to the posthumanities (pp. 129–140). Springer.

    Chapter  Google Scholar 

  61. Fredengren, C. (2018b). Re-wilding the environmental humanities: A deep time comment. Current Swedish Archaeology, 26, 50–60.

    Article  Google Scholar 

  62. Fritz, G. (1990). Multiple pathways to farming in precontact eastern North America. Journal of World Prehistory, 4(4), 387–435.

    Article  Google Scholar 

  63. Fuller, D. (2007). Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany, 100, 903–909.

    Article  Google Scholar 

  64. Fuller, D. (2018). Long and attenuated: Comparative trends in the domestication of tree fruits. Vegetation History and Archaeobotany, 27(1), 165–176.

    Article  Google Scholar 

  65. Fuller, D., Allaby, R., & Stevens, C. (2010). Domestication as innovation: The entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeology, 42, 13–28.

    Article  Google Scholar 

  66. Fuller, D., Asouti, E., & Purugganan, M. (2012). Cultivation as slow evolutionary entanglement: Comparative data on rate and sequence of domestication. Vegetation History and Archaeobotany, 21(2), 131–145.

    Article  Google Scholar 

  67. Fuller, D., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C., Qin, L., et al. (2014). Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences, 111(17), 6147–6152.

    Article  Google Scholar 

  68. Fuller, D., & Hildebrand, E. (2013). Domesticating plants in Africa. In P. Mitchell & P. J. Lane (Eds.), The Oxford handbook of African archaeology (pp. 507–526). Oxford University Press.

    Google Scholar 

  69. Fuller, D., Qin, L., Zheng, Y., Zhao, Z., Chen, X., Hosoya, L., & Sun, G. (2009). The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangzte. Science, 323(1), 607–1610.

    Google Scholar 

  70. Fuller, D., & Stevens, C. (2019). Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Vegetation History and Archaeobotany, 28(3), 263–282.

    Article  Google Scholar 

  71. Fuller, D., Wilcox, G., & Allaby, R. (2011). Cultivation and domestication had multiple origins: Arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeology, 43(4), 628–652.

  72. Galvin, S. (2018). Interspecies relations and agrarian worlds. Annual Reviews in Anthropology, 47, 233–249.

    Article  Google Scholar 

  73. Gaut, B., Díez, C., & Morrell, P. (2015). Genomics and the contrasting dynamics of annual and perennial domestication. Trends in Genetics, 31(12), 709–719.

    Article  Google Scholar 

  74. Gaut, B., Seymour, D., Liu, Q., & Zhou, Y. (2018). Demography and its effects on genomic variation in crop domestication. Nature Plants, 4(8), 512–520.

    Article  Google Scholar 

  75. Gerbault, P., Allaby, R., Boivin, N., Rudzinski, A., Grimaldi, I., Pires, J., et al. (2014). Storytelling and story testing in domestication. Proceedings of the National Academy of Sciences, 111(17), 6159–6164.

    Article  Google Scholar 

  76. Gharghani, A., Solhjoo, S., & Oraguzie, N. (2016). A review of genetic resources of pome fruits in Iran. Genetic Resources on Crop Evolution, 63, 151–172.

    Article  Google Scholar 

  77. Gharghani, A., Zamani, Z., Talaie, A., Fattahi, R., Hajnajari, H., Oraguzie, N. C., Wiedow, C., & Gardiner, S. (2010). The role of Iran (Persia) in apple (Malus × domestica Borkh.) domestication, evolution and migration via the Silk Trade Route. Acta Horticulturae, 859, 229–236.

  78. Gharghani, A., Zamani, Z., Talaie, A., Oraguzie, N. C., Fatahi, R., Hajnajari, H., Wiedow, C., & Gardiner, S. (2009). Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genetic Resources and Crop Evolution, 56(6), 829–842.

  79. Gladieux, P., Zhang, X., Róldan-Ruiz, I., Caffier, V., Leroy, T., Devaux, M., et al. (2010). Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Molecular Ecology, 19(4), 658–674.

  80. Goldschmidt, E. (2013). The evolution of fruit tree productivity: A review. Economic Botany, 67(1), 51–62.

    Article  Google Scholar 

  81. Gross, B., Henk, A., Richards, C., Fazio, G., & Volk, G. (2014). Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. American Journal of Botany, 101(10), 1770–1779.

  82. Gross, B., Wedger, M., Martinez, M., Volk, G., & Hale, C. (2018). Identification of unknown apple (Malus × domestica) cultivars demonstrates the impact of local breeding program on cultivar diversity. Genetic Resources and Crop Evolution, 65(5), 1317–1327.

  83. Haas, M., Schreiber, M., & Mascher, M. (2019). Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. Journal of Integrative Plant Biology, 61(3), 204–225.

    Article  Google Scholar 

  84. Håkansson, N., & Widgren, M. (Eds.). (2016). Landesque capital: The historical ecology of enduring landscape modifications. Left Coast Press.

    Google Scholar 

  85. Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–853.

    Article  Google Scholar 

  86. Haraway, D. (1985). A cyborg manifesto. In I. Szeman & T. Kaposy (Eds.), Cultural theory: An anthology (pp. 454–471). West Sussex: Wiley-Blackwell.

    Google Scholar 

  87. Haraway, D. (2003). The companion species manifesto: Dogs, people, and significant otherness. Prickly Paradigm Press.

    Google Scholar 

  88. Haraway, D. (2007). When species meet. University of Minnesota Press.

    Google Scholar 

  89. Harris, S., Robinson, J., & Juniper, B. (2002). Genetic clues to the origin of the apple. Trends in Genetics, 18(8), 426–430.

    Article  Google Scholar 

  90. Hartigan, J. (2017). Care of the species: Races of corn and the science of plant biodiversity. University of Minnesota Press.

    Book  Google Scholar 

  91. Hayles, N. (1999). How we became posthuman: Virtual bodies in cybernetics, literature, and informatics. University of Chicago Press.

    Book  Google Scholar 

  92. Hayles, N. (2003). Afterword: The human in the posthuman. Cultural Critique, 53(1), 134–137.

    Article  Google Scholar 

  93. Hermes, T., Frachetti, M., Bullion, E., Maksudov, F., Mustafokulov, S., & Makarewicz, C. (2018). Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s Silk Roads. Scientific Reports, 8(1), 1–11.

    Article  Google Scholar 

  94. Hermes, T., Frachetti, M., Voyakin, D., Yerlomaeva, A., Beisenov, A., Doumani Dupuy, P., et al. (2020). High mitochondrial diversity of domesticated goats persisted among Bronze and Iron Age pastoralists in the Inner Asian Mountain Corridor. PLoS ONE, 15(5), e0233333.

    Article  Google Scholar 

  95. Hildebrand, E. (2009). The utility of ethnobiology in agricultural origins research. Current Anthropology, 50(5), 693–697.

    Article  Google Scholar 

  96. Hird, M. (2009). The origins of sociable life: Evolution after science studies. Palgrave Macmillan.

    Book  Google Scholar 

  97. Hird, M. (2010). Coevolution, symbiosis and sociology. Ecological Economics, 69(4), 737–742.

    Article  Google Scholar 

  98. Höfer, M., Flachowsky, H., Hanke, M. V., Semënov, V., Šlâvas, A., Bandurko, I., Sorokin, A., & Alexanian, S. (2013). Assessment of phenotypic variation of Malus orientalis in the North Caucasus region. Genetic Resources and Crop Evolution, 60(4), 1463–1477.

    Article  Google Scholar 

  99. Ingold, T. (1994). From trust to domination: An alternative history of human–animal relations. In A. Manning & J. Serpell (Eds.), Animals and human society: Changing perspectives (pp. 1–22). Routledge.

    Google Scholar 

  100. Janick, J. (2005). The origins of fruits, fruit growing, and fruit breeding. Plant Breeding Reviews, 25, 255–321.

    Google Scholar 

  101. Janick, J. (2007). Genetic alteration associated with fruit domestication. Acta Horticultura, 750, 27–35.

    Article  Google Scholar 

  102. Joerstad, M. (2019). The Hebrew Bible and environmental ethics: Humans, nonhumans, and the living landscape. Cambridge University Press.

    Book  Google Scholar 

  103. Juniper, B., & Mabberley, D. (2006). The story of the apple. Timber Press.

    Google Scholar 

  104. Kaplan, J., Krumhardt, K., Ellis, E., Ruddiman, W., Lemmen, C., & Goldewijk, K. (2011). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775–791.

    Article  Google Scholar 

  105. Khatchadourian, L. (2016). Imperial matter: Ancient Persia and the archaeology of empires. University of California Press.

    Book  Google Scholar 

  106. Khoshbakht, K., & Hammer, K. (2006). Savadkouh (Iran): An evolutionary center for fruit trees and shrubs. Genetic Resources on Crop Evolution, 53, 641–651.

    Article  Google Scholar 

  107. Kik, C., Korpelainen, H., Vögel, R., Asdal, Å., Eliáš, P., Draper, D., & Magos Brehm, J. (2011). Malus sylvestris. The IUCN Red List of Threatened Species 2011: e.T172170A6841688. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T172170A6841688.en. Accessed 28 June 2017.

  108. Kluyver, T., Charles, M., Jones, G., Rees, M., & Osborne, C. P. (2013). Did greater burial depth increase the seed size of domesticated legumes? Journal of Experimental Botany, 64(13), 4101–4108.

  109. Kluyver, T., Jones, G., Pujol, B., Bennett, C., Mockford, E., Charles, M., et al. (2017). Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters, 1(2), 64–72.

    Article  Google Scholar 

  110. Korban, S., & Skirvin, R. (1984). Nomenclature of the cultivated apple. Horticultural Science, 19, 177–180.

    Google Scholar 

  111. Ladizinsky, G. (1987). Pulse domestication before cultivation. Economic Botany, 41, 60–65.

    Article  Google Scholar 

  112. Lam, W. F. (1996). Improving the performance of small-scale irrigation systems: The effects of technological investments and governance structure on irrigation performance in Nepal. World Development, 24(8), 1301–1315.

    Article  Google Scholar 

  113. Landy, F. (2020). Erotic words, sacred landscapes, ideal bodies: Love and death in the Song of Songs. In K. Seigneurie (Ed.), A companion to world literature, doi:https://doi.org/10.1002/9781118635193.ctwl0050

  114. Langlie, B., Mueller, N., Spengler, R., & Fritz, G. (2014). Agricultural origins from the ground up: Archaeological approaches to plant domestication. American Journal of Botany, 101(10), 1601–1617.

    Article  Google Scholar 

  115. Larson, G., Piperno, D., Allaby, R., Purugganan, M., Andersson, L., Arroyo-Kalin, M., et al. (2014). Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences, 111(17), 6139–6146.

    Article  Google Scholar 

  116. Latour, B. (1993). We have never been modern. Harvard University Press.

    Google Scholar 

  117. Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford University Press.

    Google Scholar 

  118. Latour, B. (2014). Agency at the time of the Anthropocene. New Literary History, 45(1), 1–18.

    Article  Google Scholar 

  119. Latour, B. (2017). Anthropology at the time of the Anthropocene: A personal view of what is to be studied. In M. Brightman & J. Lewis (Eds.), The anthropology of sustainability (pp. 35–49). Palgrave Macmillan.

    Chapter  Google Scholar 

  120. Leforestier, D., Ravon, E., Muranty, H., Cornille, A., Lemaire, C., Giraud, T., et al. (2015). Genomic basis of the differences between cider and dessert apple varieties. Evolutionary Applications, 8(7), 650–661.

    Article  Google Scholar 

  121. Malm, A., & Hornborg, A. (2014). The geology of mankind? A critique of the Anthropocene narrative. The Anthropocene Review, 1(1), 62–69.

    Article  Google Scholar 

  122. McCorriston, J. (1997). The fiber revolution: Textile extensification, alienation, and social stratification in ancient Mesopotamia. Current Anthropology, 38(4), 517–535.

    Article  Google Scholar 

  123. McKey, D., Elias, M., Pujol, B., & Duputié, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 186(2), 318–332.

    Article  Google Scholar 

  124. Meyer, R., DuVal, A., & Jensen, H. (2012). Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytologist, 196(1), 29–48.

    Article  Google Scholar 

  125. Milla, R., Osborne, C., Turcotte, M., & Violle, C. (2015). Plant domestication through an ecological lens. Trends in Ecology and Evolution, 30(8), 463–469.

    Article  Google Scholar 

  126. Miller, A., & Gross, B. (2011). From forest to field: Perennial fruit crop domestication. American Journal of Botany, 98(9), 1389–1414.

    Article  Google Scholar 

  127. Miller, N. F. (1999). Agricultural development in western Central Asia in the Chalcolithic and Bronze Ages. Vegetation History and Archaeobotany, 8(1), 13–19.

    Article  Google Scholar 

  128. Mithen, S., Finlay, N., Carruthers, W., Carter, S., & Ashmore, P. (2001). Plant use in the Mesolithic: Evidence from Staosnaig, Isle of Colonsay Scotland. Journal of Archaeological Science, 28(3), 223–234.

  129. Moore, J. (2017). The Capitalocene, Part I: On the nature and origins of our ecological crisis. The Journal of Peasant Studies, 44(3), 594–630.

    Article  Google Scholar 

  130. Moore, K. M., Miller, N. F., Hiebert, F. T., & Meadow, R. H. (1994). Research on agriculture and herding in the early oasis settlements of the Oxus Civilization. Antiquity, 68(259), 418.

    Article  Google Scholar 

  131. Morgan, J., & Richards, A. (1993). The book of apples. Ebary Press.

    Book  Google Scholar 

  132. Morrison, K. (2018). Empires as ecosystem engineers: Toward a nonbinary political ecology. Journal of Anthropological Archaeology, 52, 196–203.

    Article  Google Scholar 

  133. Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. (2009). A history of grafting. Horticultural Reviews, 35, 437–493.

    Article  Google Scholar 

  134. Mueller, N. (2017). Evolutionary ‘bet-hedgers’ under cultivation: Investigating the domestication of erect knotweed (Polygonum erectum L.) using growth experiments. Human Ecology, 45(2), 189–203.

  135. Nikiforova, S., Cavalieri, D., Velasco, R., & Goremykin, V. (2013). Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Molecular Biology and Evolution, 30(8), 1751–1760.

    Article  Google Scholar 

  136. Nimmo, R. (2015). Apiculture in the Anthropocene: Between posthumanism and critical animal studies. In H. A. R. N. E. Collective (Ed.), Animals in the Anthropocene: Critical perspectives on non-human futures (pp. 177–199). University of Sydney Press.

    Google Scholar 

  137. Omasheva, M., Chekalin, S., & Galiakparov, N. (2015). Evaluation of molecular genetic diversity of wild apple Malus sieversii populations from Zailiysky Alatau by microsatellite markers. Russian Journal of Genetics, 51(7), 647–652.

    Article  Google Scholar 

  138. Omasheva, M., Flachowsky, H., Ryabushkina, N., Pozharskiy, A., Galiakparov, N., & Hanke, M. (2017). To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genetics and Genomes, 13(3), 52.

    Article  Google Scholar 

  139. Omasheva, M., Pozharsky, A., Smailov, B., Ryabushkina, N., & Galiakparov, N. (2018). Genetic diversity of apple cultivars growing in Kazakhstan. Russian Journal of Genetics, 54(2), 176–187.

    Article  Google Scholar 

  140. Ostrom, E., Janssen, M., & Anderies, J. (2007). Going beyond panaceas. Proceedings of the National Academy of Sciences, 104(39), 15176–15178.

    Article  Google Scholar 

  141. Peace, C., Bianco, L., Troggio, M., van de Weg, E., Howard, N., Cornille, A., et al. (2019). Apple whole genome sequences: Recent advances and new prospects. Horticulture Research, 6, 59–73.

    Article  Google Scholar 

  142. Piperno, D. (2017). Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origins research. PNAS, 114(25), 6429–6437.

    Article  Google Scholar 

  143. Pollegioni, P., Woeste, K., Chiocchini, F., Del Lungo, S., Olimpieri, I., Tortolano, V., Clark, J., Hemery, G., Mapelli, S., & Malvolti, M. (2015). Ancient humans influenced the current spatial genetic structure of common walnut populations in Asia. PLoS ONE, 10(9), e0135980.

    Article  Google Scholar 

  144. Pollegioni, P., Woeste, K., Chiocchini, F., Olimpieri, I., Tortolano, V., Clark, J., Hemery, G., Mapelli, S., & Malvolti, M. (2014). Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genetics and Genomes, 10(4), 1027–1043.

    Article  Google Scholar 

  145. Postgate, J. N. (1987). Notes on fruits in cuneiform sources. Bulletin of Sumerian Agriculture, 3, 115–144.

    Google Scholar 

  146. Purugganan, M. (2019). Evolutionary insights into the nature of plant domestication. Current Biology, 29, R705–R714.

    Article  Google Scholar 

  147. Purugganan, M., & Fuller, D. (2009). The nature of selection during plant domestication. Nature, 457(7231), 843–848.

    Article  Google Scholar 

  148. Purugganan, M., & Fuller, D. (2011). Archaeological data reveal slow rates of evolution during plant domestication. Evolution, 65(1), 171–183.

    Article  Google Scholar 

  149. Renfrew, J. M. (1987). Fruits from ancient Iraq: The paleoethnobotanical evidence. Bulletin of Sumerian Agriculture, 3, 157–161.

    Google Scholar 

  150. Rezakhani, K. (2010). The road that never was: The Silk Road and trans-Eurasian exchange. Comparative Studies of South Asia, Africa and the Middle East, 30(3), 420–433.

    Article  Google Scholar 

  151. Rhodes, L., & Maxted, N. (2016). Malus orientalis. The IUCN Red List of Threatened Species 2016: e.T50049710A50049714. http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T50049710A50049714.en. Accessed on 28 June 2017.

  152. Richards, C., Volk, G., Reilley, A., Henk, A., Lockwood, D., Reeves, P., & Forsline, P. (2009). Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genetics and Genomes, 5(2), 339–347.

    Article  Google Scholar 

  153. Rindos, D. (1984). The origins of agriculture: An evolutionary perspective. Academic Press.

    Google Scholar 

  154. Rosen, A. M., Chang, C., & Grigoriev, F. P. (2000). Palaeoenvironments and economy of Iron Age Saka-Wusun agro-pastoralists in southeastern Kazakhstan. Antiquity, 74(285), 611.

  155. Rosenzweig, M., & Marston, J. (2018). Archaeologies of empire and environment. Journal of Anthropological Archaeology, 52, 87–102.

    Article  Google Scholar 

  156. Rouse, L. (2020). Silent partners: Archaeological insights on mobility, interaction and civilization in Central Asia’s past. Central Asian Survey, 39, 398–419.

    Article  Google Scholar 

  157. Rouse, L., & Cerasetti, B. (2017). Micro-dynamics and macro-patterns: Exploring new archaeological data for the late Holocene human–water relationship in the Murghab alluvial fan, Turkmenistan. Quaternary International, 437, 20–34.

    Article  Google Scholar 

  158. Ruddiman, W., Ellis, E., Kaplan, J., & Fuller, D. (2015). Defining the epoch we live in. Science, 348(6230), 38–39.

    Article  Google Scholar 

  159. Schmaus, T., Chang, C., & Tourtellotte, P. (2018). A model for pastoral mobility in Iron Age Kazakhstan. Journal of Archaeological Science: Reports, 17, 137–143.

    Google Scholar 

  160. Schmaus, T., Doumani Dupuy, P., & Frachetti, M. (2019). Variability in seasonal mobility patterns in Bronze and Iron Age Kazakhstan through cementum analysis. Quaternary International, 545, 102–110.

    Article  Google Scholar 

  161. Schmidt, E. (1953). Persepolis I: Structures, reliefs, inscriptions, OIP LXVIII. University of Chicago Press.

    Google Scholar 

  162. Schreiber, M., Stein, N., & Mascher, M. (2018). Genomic approaches for studying crop evolution. Genome Biology, 19, 140–155.

    Article  Google Scholar 

  163. Schulthies, B. (2020). Phytocommunicability and cross-species sociality. Ethnos, 86, 199–206.

    Article  Google Scholar 

  164. Sherratt, A. (1983). The secondary products revolution of animals in the Old World. World Archaeology, 15, 90–104.

    Article  Google Scholar 

  165. Shryock, A., & Smail, D. (2011). Introduction. In A. Shryock & D. Smail (Eds.), Deep history: The architecture of past and present (pp. 3–20). University of California Press.

    Chapter  Google Scholar 

  166. Smith, B. (2001). Low-level food production. Journal of Archaeological Research, 9(1), 1–43.

    Article  Google Scholar 

  167. Smith, B. (2011). A cultural niche construction theory of initial domestication. Biological Theory, 6, 260–271.

    Article  Google Scholar 

  168. Smith, B., & Zeder, M. (2013). The onset of the Anthropocene. Anthropocene, 4, 8–13.

  169. Smith, M. (2007). Territories, corridors, and networks: A biological model for the premodern state. Complexity, 12(4), 28–35.

  170. Smýkal, P., Nelson, M., Berger, J., & von Wettberg, E. (2018). The impact of genetic changes during crop domestication. Agronomy, 8, 119–141.

    Article  Google Scholar 

  171. Spengler, R., III. (2014). Niche dwelling vs. niche construction: Landscape modification in the Bronze and Iron Ages of Central Asia. Human Ecology, 42(6), 813–821.

    Article  Google Scholar 

  172. Spengler, R., III. (2019a). Origins of the apple: The role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Frontiers in Plant Science, 10, 617.

  173. Spengler, R., III. (2019b). Fruits from the sands: The Silk Road origins of the foods we eat. University of California Press.

    Book  Google Scholar 

  174. Spengler, R., III. (2020). Anthropogenic seed dispersal: Rethinking the origins of plant domestication. Trends in Plant Science, 25(4), 340–348.

    Article  Google Scholar 

  175. Spengler, R., III., Cerasetti, B., Tengberg, M., Cattani, M., & Rouse, L. (2014a). Agriculturalists and pastoralists: Bronze Age economy of the Murghab alluvial fan, southern Central Asia. Vegetation History and Archaeobotany, 23(6), 805–820.

  176. Spengler, R., III., Chang, C., & Tourtellotte, P. A. (2013a). Agricultural production in the Central Asian mountains: Tuzusai, Kazakhstan (410–150 BC). Journal of Field Archaeology, 38(1), 68–85.

    Article  Google Scholar 

  177. Spengler, R., III., Frachetti, M., & Doumani, P. (2014b). Late Bronze Age agriculture at Tasbas in the Dzhungar Mountains of eastern Kazakhstan. Quaternary International, 348, 147–157.

  178. Spengler, R., III., Frachetti, M. D., & Fritz, G. J. (2013b). Ecotopes and herd foraging practices in the steppe/mountain ecotone of Central Asia during the Bronze and Iron Ages. Journal of Ethnobiology, 33(1), 125–147.

    Article  Google Scholar 

  179. Spengler, R., III., Maksudov, F., Bullion, E., Merkle, A., Hermes, T., & Frachetti, M. (2018). Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak. PLoS ONE, 13(8), e0201409.

    Article  Google Scholar 

  180. Spengler, R., III., Miller, N., Neef, R., Tourtellotte, P., & Chang, C. (2017). Linking agriculture and exchange to social developments of the Central Asian Iron Age. Journal of Anthropological Archaeology, 48, 295–308.

    Article  Google Scholar 

  181. Stevens, C., Murphy, C., Roberts, R., Lucas, L., Silva, F., & Fuller, D. (2016). Between China and South Asia: A Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene, 26(10), 1541–1555.

  182. Stone, G. (2010). The anthropology of genetically modified crops. Annual Review of Anthropology, 39, 381–400.

    Article  Google Scholar 

  183. Stone, G. (2016). Towards a general theory of agricultural knowledge production: Environmental, social, and didactic learning. Culture, Agriculture, Food and Environment, 38(1), 5–17.

    Article  Google Scholar 

  184. Stone, G., Flachs, A., & Diepenbrock, C. (2014). Rhythms of the herd: Long term dynamics in seed choice by Indian farmers. Technology in Society, 36, 26–38.

    Article  Google Scholar 

  185. Tanno, K., & Willcox, G. (2006). How fast was wild wheat domesticated? Science, 311(1), 886.

    Google Scholar 

  186. Tsing, A. (2012). Unruly edges: Mushrooms as companion species. For Donna Haraway. Environmental Humanities, 1(1), 141–154.

  187. Tsing, A. (2015). The mushroom at the end of the world: On the possibility of life in capitalist ruins. Princeton University Press.

    Book  Google Scholar 

  188. Tukey, H. B. (1964). Dwarfed fruit trees. Cornell University Press.

    Google Scholar 

  189. Turner-Hissong, S., Mabry, M., Beissinger, T., Ross-Ibarra, J., & Pires, J. (2020). Evolutionary insights into plant breeding. Current Opinion in Plant Biology, 54, 93–100.

    Article  Google Scholar 

  190. Ullah, I., Chang, C., & Tourtellotte, P. (2019). Water, dust, and agro-pastoralism: Modeling socio-ecological co-evolution of landscapes, farming, and human society in southeast Kazakhstan during the mid to late Holocene. Journal of Anthropological Archaeology, 55, 101067.

    Article  Google Scholar 

  191. Van Der Veen, M. (2010). Agricultural innovation: Invention and adoption or change and adaptation? World Archaeology, 42(1), 1–12.

    Article  Google Scholar 

  192. Van der Veen, M. (2014). The materiality of plants: Plant–people entanglements. World Archaeology, 46(5), 799–812.

    Article  Google Scholar 

  193. Vavilov, N. I. (1930). Wild progenitors of the fruit trees of Turkestan and the Caucasus and the problem of the origin of fruit trees. In Proceedings of the 9th International Horticultural Congress of the Royal Horticultural Society, London, pp. 271–286.

  194. Velasco, D., Hough, J., Aradhya, M., & Ross-Ibarra, J. (2016). Evolutionary genomics of peach and almond domestication. G3: Genes, Genomes, Genetics, 6(12), 3985–3993.

    Article  Google Scholar 

  195. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., et al. (2010). The genome of the domesticated apple (Malus x domestica Borkh.). Nature Genetics, 42(10), 833–839.

  196. Volk, G., Henk, A., Richards, C., Forsline, P., & Chao, C. (2013). Malus sieversii: A diverse Central Asian apple species in the USDA–ARS national plant germplasm system. HortScience, 48(12), 1440–1444.

    Article  Google Scholar 

  197. Volk, G., Richards, C., & Forsline, P. (2010). A comprehensive approach toward conserving Malus germplasm. Acta Horticultura, 859, 177–182.

  198. Weiss, E. (2015). ‘Beginnings of fruit growing in the Old World’: Two generations later. Israel Journal of Plant Sciences, 62(1–2), 75–85.

    Article  Google Scholar 

  199. Yao, J., Xu, J., Cornille, A., Tomes, S., Karunairetnam, S., Luo, Z., et al. (2015). A micro RNA allele that emerged prior to apple domestication may underlie fruit size evolution. The Plant Journal, 84(2), 417–427.

    Article  Google Scholar 

  200. Zeder, M. (2017). Domestication as a model system for the extended evolutionary synthesis. Interface Focus, 7, 20160133.

    Article  Google Scholar 

  201. Zohary, D. (2004). Unconscious selection and the evolution of domesticated plants. Economic Botany, 58(1), 5–10.

    Article  Google Scholar 

  202. Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of plants in the Old World. Oxford: Oxford University Press.

    Book  Google Scholar 

  203. Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of fruit growing in the Old World. Science, 187(4174), 319–327.

Download references

Acknowledgements

The author wishes to thank Fiona Kidd, John M. Marston, and Robert Spengler for their comments on early drafts of the manuscript. Jules Janick provided stimulating conversation and insightful feedback that was instrumental in the development of the ideas presented here. Perry Kirkham contributed the orchard photo, and he and the Kirkham family of Wea Creek Orchards, IN provided numerous insights that contributed to the formation of the ideas in this paper. A special thank you also to Keith Woeste and Kevin McNamara for directing me to resources about fruit tree horticulture in Central Asia. Feedback on presentations of the work at the Cotsen Institute of Archaeology, UCLA and the Hamilton Lugar School of Global and International Studies, Indiana University greatly improved revisions, and I am especially thankful to Monica Smith and Marianne Kamp for organizing those sessions and providing me with comments that inspired significant improvement to the work. Many thanks to the editorial board and staff of the Journal of World Prehistory for their guidance, patience, and support in the development of the manuscript, and to the two anonymous reviewers for their valuable feedback. All errors or omissions are mine alone.

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Baker Brite.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brite, E.B. The Origins of the Apple in Central Asia. J World Prehist 34, 159–193 (2021). https://doi.org/10.1007/s10963-021-09154-8

Download citation

Keywords

  • Domestication
  • Crop evolution
  • Apple
  • Fruit trees
  • Arboriculture
  • Genomics
  • Posthumanism
  • Central Asia
  • Silk road