Skip to main content

The Muddle in the Middle Pleistocene: The Lower–Middle Paleolithic Transition from the Levantine Perspective

Abstract

The terms Lower Palaeolithic and Middle Palaeolithic represent research constructs within which cultural evolution and prehistoric hominin behaviours can be studied, with the transition usually understood as marking a watershed in our evolution: an adaptation with a million-year record of success that gives way to something new. The interpretation of the Lower Palaeolithic Acheulian technocomplex is usually understood as a period of cultural stasis that extends over much of Africa and Eurasia, principally associated with Homo erectus. Those innovations that can be observed occur widely separated from one another in space and time. Yet a closer and more detailed examination of the Middle Pleistocene records from East Africa, southern Africa, Europe and the Levant reveals significant variation in cultural repertoires. A kind of paradox emerges, in which an Old World Lower Palaeolithic, apparently lacking an overall dynamic of distinctive and directed change in terms of cumulative variation over time, nevertheless culminates in a transition which sees the universal appearance of the Middle Palaeolithic. The two main hypotheses that have been advanced to explain the global transition, which happens essentially synchronously, appear mutually exclusive and contradictory. One view is that altered climatic-environmental constraints enabled and encouraged an ‘Out-of-Africa’ dispersal (or dispersals) of a new type of genus Homo. This cultural replacement model has been challenged more recently by the alternative hypothesis of accumulating but unrelated and temporally non-linked regional, and in fact potentially autochthonous, processes. The Levant, by virtue of its position bridging Africa and Eurasia (thus being the region into which any out-of-Africa groups would have had first to disperse into), must be seen as a critical region for assessing the relative merits of these competing hypotheses. This paper deals with the Lower–Middle Paleolithic boundary in the Levant within a long temporal perspective. The Middle Pleistocene record in the Levant enables us to examine the amplitude of variation within each techno-complex, as well as to question whether there are diachronic changes in the amplitude of techno-typological variations as well as changes in the manner by which they appear in the record. The results carry significant implications for understandings of demographic and societal processes during the Lower–Middle Paleolithic transition in the Levant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Adler, D. S., Wilkinson, K. N., Blockley, S., Mark, D., Pinhasi, R., Schmidt-Magee, B. A., et al. (2014). Early Levallois technology and the transition from the Lower to Middle Palaeolithic in the Southern Caucasus. Science, 345, 1609–1613.

    Article  Google Scholar 

  • Almogi-Labin, A., Bar-Matthews, M., & Ayalon, A. (2004). Climate variability in the Levant and northeast Africa during the Late Quaternary based on marine and land records. In N. Goren-Inbar & J. D. Speth (Eds.), Human paleoecology in the Levantine corridor (pp. 117–134). Oxford: Oxbow Books.

    Google Scholar 

  • Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., et al. (2009). Climatic variability during the last 90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews, 28, 2882–2896.

    Article  Google Scholar 

  • Ameloot-van der Heijden, N. (1993). L’ensemble lithique du gisement de Longavesnes (Somme): Illustration d’un problème de reconnaissance du débitage Levallois dans une industrie à bifaces de la phase ancienne du Paléolithique moyen. Bulletin de la Société Préhistorique Française, 90(4), 257–264.

    Article  Google Scholar 

  • Amit, R., Enzel, Y., & Sharon, D. (2006). Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems. Geology, 34(6), 509–512.

    Article  Google Scholar 

  • Arnold, L. J., Demuro, M., Pares, J. M., Perez-Gonzalez, A., Arsuaga, J. L., Bermúdez de Castro, J. M., & Carbonell, E. (2015). Evaluating the suitability of extended-range luminescence dating techniques over Early and Middle Pleistocene timescales: Published datasets and case studies from Atapuerca, Spain. Quaternary International 389(2), 167–190.

    Article  Google Scholar 

  • Ashkenazi, H. (2005). Standardization of blade production in the Levantine Middle Paleolithic. M.A. thesis. Jerusalem: The Hebrew University of Jerusalem (in Hebrew).

  • Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology, 26, 198–223.

    Article  Google Scholar 

  • Barkai, R., Gopher, A., Lauritzen, S. E., & Frumkin, A. (2003). Uranium series dates from Qesem Cave, Israel, and the end of the Lower Palaeolithic. Nature, 423, 977–979.

    Article  Google Scholar 

  • Barkai, R., Gopher, A., & Shimelmitz, R. (2005). Middle Pleistocene blade production in the Levant: An Amudian assemblage from Qesem Cave, Israel. Eurasian Prehistory, 3, 39–74.

    Google Scholar 

  • Barkai, R., Gopher, A., Solodenko, L., & Lemorini, C. (2013). An Amudian oddity: A giant biface from Late Lower Palaeolithic Qesem Cave. Tel-Aviv, 40, 176–186.

    Article  Google Scholar 

  • Barkai, R., Lemorini, C., & Gopher, A. (2010). Palaeolithic cutlery 400,000–200,000 years ago: Tiny meat-cutting tools from Qesem Cave. Israel. Antiquity, 84, 325.

    Google Scholar 

  • Barkai, R., Lemorini, C., Shimelmitz, R., Lev, Z., Stiner, M. C., & Gopher, A. (2009). A blade for all seasons? Making and using Amudian blades at Qesem Cave, Israel. Human Evolution, 24, 57–75.

    Google Scholar 

  • Barsky, D., Garcia, J., Martínez, K., Sala, R., Zaidner, Y., Carbonell, E., & Toro-Moyano, I. (2013). Flake modification in European Early and Early-Middle Pleistocene stone tool assemblages. Quaternary International, 316, 140–154.

    Article  Google Scholar 

  • Bar-Yosef, O. (1982). Some remarks on the nature of transition in prehistory. In A. Ronen (Ed.), The transition from Lower to Middle Paleolithic and the origin of modern Man (pp. 29–35). Oxford: BAR International Series.

    Google Scholar 

  • Bar-Yosef, O. (1994). The Lower Paleolithic of the Near East. Journal of World Prehistory, 8, 211–265.

    Article  Google Scholar 

  • Bar-Yosef, O. (1998). The chronology of the Middle Paleolithic in the Levant. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and Modern Humans in Asia (pp. 39–56). New York: Plenum Press.

    Google Scholar 

  • Bar-Yosef, O., & Belmaker, M. (2011). Early and Middle Pleistocene faunal and hominins dispersals through Southwestern Asia. Quaternary Science Reviews, 30(11–12), 1318–1337.

    Article  Google Scholar 

  • Bar-Yosef, O., & Goren-Inbar, N. (1993). The lithic assemblages of’ Ubeidiya: A Lower Palaeolithic site in the Jordan Valley. Qedem (Vol. 34). Jerusalem: Institute of Archeology, The Hebrew University of Jerusalem.

    Google Scholar 

  • Bar-Yosef, O., Vandermeersch, B., Arensburg, B., Belfer-Cohen, A., Goldberg, P., Laville, H., et al. (1992). The excavations in Kebara Cave, Mt. Carmel. Current Anthropology, 33, 497–550.

    Article  Google Scholar 

  • Barzilai, O., Malinsky-Buller, A., & Ackermann, O. (2006). Kefar Menachem West: A Lower Palaeolithic site in the Shephela, Israel. Journal of the Israel Prehistoric Society, 36, 7–38.

    Google Scholar 

  • Basalla, G. (1988). The evolution of technology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bate, M. A. D. (1927a). On the animal remains obtained from the Mugharet El Zuttiyeh in 1925. In F. A. J. Turville-Petre (Ed.), Researches in prehistoric Galilee 1925–1926 (pp. 27–34). London: Council of the British School of Archaeology in Jerusalem.

    Google Scholar 

  • Bate, M. A. D. (1927b). On the animal remains obtained from the Mugharet El Zuttiyeh in 1926. In F. A. J. Turville-Petre (Ed.), Researches in prehistoric Galilee 1925–1926 (pp. 35–49). London: Council of the British School of Archaeology in Jerusalem.

    Google Scholar 

  • Bate, D. M. A. (1937). Palaeontology: The fossil fauna of the Wady el-Mughara caves. In D. A. E. Garrod & D. M. A. Bate (Eds.), The Stone Age of Mount Carmel: Excavations at the Wady el-Mughara (Vol. I, pp. 135–233). Oxford: Clarendon Press.

    Google Scholar 

  • Baumler, M. E. (1988). Core reduction, flake production and the Middle Paleolithic industry of Zobiste (Yugoslavia). In H. L. Dibble & A. Montet-White (Eds.), Upper Pleistocene prehistory of Western Eurasia, University Museum Monographs 54 (pp. 255–274). Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Belmaker, M. (2009). Hominin adaptability and patterns of faunal turnover in the Lower–Middle Pleistocene transition in the Levant. In M. Camps & P. R. Chauhan (Eds.), A sourcebook of Paleolithic transitions: Methods, theories and interpretations (pp. 211–227). New York: Springer.

    Chapter  Google Scholar 

  • Bentley, R. A., & Shennan, S. J. (2003). Cultural transmission and stochastic network growth. American Antiquity, 68(3), 459–485.

    Article  Google Scholar 

  • Besançon, J., Copeland, L., & Hours, F. (1982). L’Acheuléen moyen de Joubb Jannine (Lihan). Paléorient, 8(1), 11–35.

    Article  Google Scholar 

  • Beyries, S., & Boeda, E. (1983). Étude technologique et traces d’utilisation des ‘éclats débordants’ de Corbehem (Pas-de-Calais). Bulletin de la Société Préhistorique Française, 80, 275–279.

    Article  Google Scholar 

  • Binford, L. R. (1979). Organization and formation processes: Looking at curated technologies. Journal of Anthropological Research, 35(3), 255–273.

    Article  Google Scholar 

  • Bleed, P. (2001). Trees or chains, links or branches: Conceptual alternatives for consideration of stone tool production and other sequential activities. Journal of Archaeological Method and Theory, 8, 101–127.

    Article  Google Scholar 

  • Boeda, E. (1990). De la surface au volume analyse des conceptions des débitages Levallois et laminaires. In C. Farizy (Ed.), Paléolithique moyen récent et Paléolithique supérieur ancien en Europe. Actes du colloque international de Nemours, 1988, Mémoires, 3 (pp. 63–68). Paris: Musée de Préhistoire d’Ilede-France.

  • Boeda, E. (1991). Approche de la variabilité des systèmes de production lithique des industries du paléolithique inferieur et moyen: Chronique d’une variabilité attendue. Technique et Culture, 17–18, 37–79.

    Google Scholar 

  • Boeda, E. (1993). Le débitage Discoïde et le débitage Levallois récurrent centripède. Bulletin de la Société Préhistorique Française, 90(6), 392–404.

    Article  Google Scholar 

  • Boeda, E. (1994). Le concept Levallois: Variabilité des méthodes. Monographie du CRA 9. Paris: CNRS Editions.

  • Boeda, E. (1995). Levallois: A volumetric construction, methods, a technique. In H. L. Dibble & O. Bar-Yosef (Eds.), The definition and interpretation of Levallois technology (pp. 41–70). Madison: Prehistory Press.

    Google Scholar 

  • Boeda, E., Geneste, J.-M., & Meignen, L. (1990). Identification de chaînes opératoires lithiques du Paléolithique ancien et moyen. Paléo, 2, 43–79.

    Article  Google Scholar 

  • Bolton, L. (2015). Assessing the origins of Levallois through Lower Palaeolithic core variation: A comparative study of Simple Prepared Cores in northwest Europe. Unpublished Ph.D. thesis. Southampton: University of Southampton.

  • Bordes, F. (1950). Principes d’une méthode d’étude des techniques de débitage et de la typologie du Paléolithique ancien et moyen. L’Anthropologie, 54, 19–34.

    Google Scholar 

  • Bordes, F. (1955). Le Paléolithique inférieur et moyen de Yabroud (Syrie) et la question du Pré-Aurignacien. L’Anthropologie, 59(5–6), 486–507.

    Google Scholar 

  • Bordes, F. (1961). Typologie du Paléolithique ancien et moyen. Publications de l’Institut de Préhistoire de l’Université de Bordeaux, mémoire 1. Bordeaux: Imprimeries Delams.

  • Bourguignon, L. (1996). La conception de debitage Quina. In A. Bietti, & S. Grimaldi (Eds.), Proceeding of the international round table reduction processes (‘Chaînes Opératoires’) for the European Mousterian, Rome, May 26–28 1995. Quaternaria Nova, VI, 149–166.

  • Bourguignon, L. (1997). Le Moustérien de type Quina: Définition d’une nouvelle entité technique. Ph.D. thesis. Nanterre: University of Paris X.

  • Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.

    Google Scholar 

  • Boyd, R., & Richerson, P. J. (1992). How microevolutionary processes give rise to history. In M. H. Nitecki & D. V. Nitecki (Eds.), History and evolution (pp. 179–210). Albany: State University of New York Press.

    Google Scholar 

  • Brantingham, P. J., & Kuhn, S. L. (2001). Constraints on Levallois core technology: A mathematical model. Journal of Archaeological Science, 28, 747–761.

    Article  Google Scholar 

  • Bridgland, D. R., Westaway, R., Abou Romieh, M., Daoud, M., Demir, T., Galiatsatos, N., et al. (2012). The River Orontes in Syria and Turkey: Downstream variation of fluvial archives in different crustal blocks. Geomorphology, 165–166, 25–49.

    Article  Google Scholar 

  • Chazan, M. (2000a). Flake production at the Lower Palaeolithic site of Holon (Israel): Implications for the origin of the Levallois method. Antquity, 74(285), 495–499.

    Google Scholar 

  • Chazan, M. (2000b). Typological analysis of the Lower Paleolithic site of Holon, Israel. Journal of the Israel Prehistoric Society, 30, 7–32.

    Google Scholar 

  • Chazan, M. (2007a). Introduction. In Chazan, M. & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 1–14). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Chazan, M. (2007b). Lithic typology. In Chazan, M. & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 43–59). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Chazan, M. (2007c). Lithic technology. In Chazan, M. & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 61–83). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Chazan, M., & Horwitz, L. K. (2006). Finding the message in intricacy: The association of lithics and fauna on Lower Paleolithic multiple carcass sites. Journal of Anthropological Archaeology, 25, 436–447.

    Article  Google Scholar 

  • Chazan, M., & Horwitz, L. K. (Eds.) (2007). Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50. Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Clark, J. D. (1967). The middle Acheulian site at Latamne, northern Syria. Quaternaria, 9, 1–68.

    Google Scholar 

  • Clark, J. D. (1968). The middle Acheulian occupation site at Latamne, northern Syria. Quaternaria, 10, 1–73.

    Google Scholar 

  • Clark, G. (1969). World prehistory: A new outline. Cambridge: Cambridge University Press.

    Google Scholar 

  • Clark, J. D. (1988). The Middle Stone Age of East Africa and the beginnings of regional identity. Journal of World Prehistory, 2(3), 235–303.

    Article  Google Scholar 

  • Clark, G. A. (1994). Migration as an explanatory concept in Paleolithic archaeology. Journal of Archaeological Method and Theory, 1, 305–343.

    Article  Google Scholar 

  • Clark, A. E. (2014). Changes in land use and occupation intensity at the onset of the Middle Paleolithic: A view from Tabun Cave, Israel. In N. Conard & A. Delagnes (Eds.), Settlement dynamics of the Middle Paleolithic and Middle Stone Age (Vol. IV, pp. 127–144). Tubingen: Kerns.

    Google Scholar 

  • Clark, J. D., & Kleindienst, M. (2001). The Stone Age cultural sequence: Terminology, typology and raw material. In J. D. Clark (Ed.), Kalambo falls prehistoric site (Vol. III, pp. 34–65). Cambridge: Cambridge University Press.

    Google Scholar 

  • Copeland, L. (1983a). Levallois/non-Levallois determinations in the Early Levant Mousterian: Problems and questions for 1983. Paléorient, 9(2), 15–27.

    Article  Google Scholar 

  • Copeland, L. (1983). The Paleolithic stone industries. In D. Roe (Ed.), Adlun in the Stone Age: The excavations of D. A. E. Garrod in the Lebanon 19581963. BAR International Series 159 (pp. 89–365). Oxford: British Archaeological Reports.

  • Copeland, L. (1985). The pointed tools of Hummal Ia (El-Kowm, Syria). Cahiers de l’Euphrate, 4, 177–189.

    Google Scholar 

  • Copeland, L. (1991). The Late Acheulean knapping-floor at C-Spring, Azraq oasis, Jordan. Levant, 23, 1–6.

    Article  Google Scholar 

  • Copeland, L. (2000). Yabrudian and related industries: The state of research in 1996. In Ronen, A., & Weinstein-Evron, M. (Eds.), Toward Modern Humans: Yabrudian and Micoquian, 40050 k-years ago. BAR International Series 850 (pp. 97–117). Oxford: Archaeopress.

  • Copeland, L. (2004). The Palaeolithic of the Euphrates valley in Syria. In Aurenche, O., Le Miere, M., & Sanlaville, P. (Eds.), From the river to the sea: The Palaeolithic and the Neolithic on the Euphrates and in the Northern Levant. Studies in honour of Lorraine Copeland (pp. 19–61). BAR International Series 1263. Oxford: Archaeopress.

  • Copeland, L., & Hours, F. (1983). Le Yabroudien d’El Kowm (Syrie) et sa place dans le Paléolithique du Levant. Paléorient, 9(1), 21–37.

    Article  Google Scholar 

  • Copeland, L. & Hours, F. (Eds.) (1989). The hammer on the rock: Studies in the Early Palaeolithic of Azraq, Jordan. BAR International Series No. 540. Oxford: British Archaeological Reports.

  • Copeland, L., & Hours, F. (1993). The Middle Orontes Palaeolithic flint industries. In P. Sanlaville, J. Besancon, L. Copeland, & S. Muhesen (Eds.), Le Paléolithique de la vallée moyenne de I’Oronte (Syrie): Peuplement et environnement (pp. 63–44). BAR International Series 587. Oxford: Archaeopress.

  • Davies, P., & Lister, A. M. (2007). Palaeoloxodon. In Chazan, M., & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 123–132). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • de la Torre, I., Mora, R. (2005). Technological strategies in the Lower Pleistocene at Olduvai beds I & II. ERAUL 112. Liège: Université de Liège.

  • Delagnes, A. (1992). Éclats à troncature inverse et enlèvements postérieurs: Réflexions nouvelles autour d’un vieux débat. Bulletin de la Société Préhistorique Française, 89(9), 274–277.

    Article  Google Scholar 

  • Dibble, H. L. (1981). Technological strategies of stone tool production at Tabun Cave (Israel). Ph.D. Dissertation. Tucson: University of Arizona.

  • Dibble, H. L. (1984). The Mousterian industry from Bisitun Cave (Iran). Paléorient, 10(2), 23–34.

    Article  Google Scholar 

  • Dibble, H. L. (1995). Middle Paleolithic scraper reduction: Background, clarification and review of the evidence to date. Journal of Archaeological Method and Theory, 2(4), 299–368.

    Article  Google Scholar 

  • Dibble, H. L., & McPherron, S. P. (2006). Truncated-faceted pieces: Hafting modification, retouch, or cores. In S. P. McPherron (Ed.), Tools versus cores: Alternative approaches to stone tool analysis (pp. 50–71). Newcastle: Cambridge Scholars Press.

    Google Scholar 

  • Douze, K., & Delagnes, A. (2016). The pattern of emergence of a Middle Stone Age tradition at Gademotta and Kulkuletti (Ethiopia) through convergent tool and point technologies. Journal of Human Evolution, 91, 93–121.

    Article  Google Scholar 

  • Duller, G. A. T., & Wintle, A. G. (2012). A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology, 7, 6–20.

    Article  Google Scholar 

  • Eerkens, J. W. (1998). Reliable and maintainable technologies: Artifact standardization and the Early to Later Mesolithic transition in Northern England. Lithic Technology, 23(1), 42–53.

    Article  Google Scholar 

  • Eerkens, J. W., & Bettinger, R. L. (2001). Techniques for assessing standardization in artifact assemblages: Can we scale material variability? American Antiquity, 66(3), 493–504.

    Article  Google Scholar 

  • Eerkens, J. W., & Lipo, C. P. (2005). Cultural transmission, copying errors, and the generation of variation in material culture and the archaeological record. Journal of Anthropological Archaeology, 24(4), 316–334.

    Article  Google Scholar 

  • Eerkens, J. W., & Lipo, C. P. (2007). Cultural transmission theory and the archaeological record: Providing context to understanding variation and temporal changes in material culture. Journal of Archaeological Research, 15(3), 239–274.

    Article  Google Scholar 

  • Ekshtain, R. (2015). Reconstructing Middle Paleolithic mobility in the Levant: A raw material perspective. Ph.D. thesis. Jerusalem: The Hebrew University of Jerusalem.

  • Enzel, Y., Amit, R., Dayan, Y., Crouvi, O., Kahana, R., Ziv, B., & Sharon, D. (2008). The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change, 60, 165–192.

    Article  Google Scholar 

  • Falgueres, C., Bahain, J.-J., Duval, M., Shao, Q., Han, F., Lebon, M., et al. (2011). A 300–600 ka ESR/U-series chronology of Acheulian sites in Western Europe. Quaternary International, 223–224, 293–298.

    Google Scholar 

  • Falgueres, C., Richard, M., Tombret, O., Shao, Q., Bahain, J. J., Gopher, A., & Barkai, R. (2015). New ESR/U-series dates in Yabrudian and Amudian layers at Qesem CaveIsrael. Quaternary International. doi:10.1016/j.quaint.2015.02.006.

    Google Scholar 

  • Feibel, C. S. (2004). Quaternary lake margins of the Levant Rift Valley. In N. Goren-Inbar & J. D. Speth (Eds.), Human paleoecology in the Levantine corridor (pp. 21–36). Oxford: Oxbow Books.

    Google Scholar 

  • Feraud, G., York, D., Hall, C. M., Goren, N., & Schwartz, H. P. (1983). 40Ar/39Ar age limit for an Acheulian site in Israel. Nature, 304, 263–265.

    Article  Google Scholar 

  • Foley, R., & Mirazón Lahr, M. (1997). Mode 3 technologies and the evolution of modern humans. Cambridge Archaeological Journal, 7(1), 3–36.

    Article  Google Scholar 

  • Foley, R., & Mirazón Lahr, M. (2003). On stony ground: Lithic technology, human evolution, and the emergence of culture. Evolutionary Anthropology, 12(3), 109–122.

    Article  Google Scholar 

  • Frumkin, A., Bar-Yosef, O., & Schwarcz, H. P. (2011). Possible paleohydrologic and paleoclimatic effects on hominin migration and occupation of the Levantine Middle Paleolithic. Journal of Human Evolution, 60, 437–451.

    Article  Google Scholar 

  • Frumkin, A., Karkanas, P., Bar-Matthews, M., Barkai, R., Gopher, A., Shahack Gross, R., & Vaks, A. (2009). Gravitational deformations and fillings of aging caves: The example of Qesem karst system, Israel. Geomorphology, 106, 154–164.

    Article  Google Scholar 

  • Gamble, S. (2001). Modes, movement and moderns. Quaternary International, 75, 5–10.

    Article  Google Scholar 

  • Garrod, D. A. E. (1956). ‘Acheuléo-Jabrudian’ et ‘Pré-Aurignacien’ de la grotte du Taboun (Mont Carmel): Étude stratigraphique et chronologique. Quaternaria, 3, 39–59.

    Google Scholar 

  • Garrod, D. A. E. (1962). The Middle Paleolithic of the Near East and the problem of Mount Carmel Man. Journal of the Royal Anthropological Institute of Great Britain and Ireland, 92, 232–251.

    Article  Google Scholar 

  • Garrod, D. A. E. (1966). Mugharet el-Bezez, Adlun: Interim report. Bulletin du Musée de Beyrouth, 19, 5–10.

    Google Scholar 

  • Garrod, D. A. E. (1970). Pre-Aurignacian and Amudian: A comparative study of the earliest blade industries of the Near East. In K. Gripp, R. Schütrumpf, & H. Schabedissen (Eds.), Frühe Menschheit und Umwelt (pp. 224–229). Köln: Böhlau.

    Google Scholar 

  • Garrod, D. A. E., & Bate, D. M. A. (1937). The Stone Age of Mount Carmel: Excavations at the Wady el-Mughara. Oxford: Clarendon Press.

    Google Scholar 

  • Garrod, D. A. E., & Kirkbride, D. (1961). Excavation of the Abri Zumoffen, a Paleolithic rock shelter near Adlun, South Lebanon. Bulletin du Musée de Beyrouth, 23, 7–46.

    Google Scholar 

  • Gasse, F., Vidal, L., Van Campo, E., Demory, F., Develle, A.-L., Tachikawa, K., et al. (2015). Hydroclimatic changes in northern Levant over the past 400,000 years. Quaternary Science Reviews, 111, 1–8.

    Article  Google Scholar 

  • Geneste, J.-M. (1985). Analyse d’industries moustériennes du Périgord: Une approche technologique du comportement des groupes humains au Paléolithique moyen. Ph.D. thesis. Bordeaux: University of Bordeaux.

  • Gilead, D. (1968). Gesher Benot Ya‘aqov. Hadashot Arheologiyot, 27, 34–35.

    Google Scholar 

  • Gilead, D. (1970a). Early Paleolithic culture in Israel and the Near East. Ph.D. thesis. Jerusalem: The Hebrew University of Jerusalem.

  • Gilead, D. (1970b). Handaxe industries in Israel and the Near East. World Archaeology, 2, 1–11.

    Article  Google Scholar 

  • Gilead, D., & Israel, M. (1975). An Early Palaeolithic site at Kefar Menahem preliminary report. Tel Aviv, 2, 1–12.

    Article  Google Scholar 

  • Gilead, D., & Ronen, A. (1977). Acheulian Industries from 'Evron on the Western Galilee Coastal Plain. Eretz-Israel, 13, 56*–86*.

    Google Scholar 

  • Gisis, I. (2008). The Lower Paleolithic of Tabun Cave. Unpublished Ph.D. thesis. Haifa: University of Haifa (in Hebrew).

  • Gisis, I., & Bar-Yosef, O. (1974). New excavations in Zuttiyeh cave, Wadi Amud, Israel. Paléorient, 5, 175–180.

    Google Scholar 

  • Gisis, I., & Ronen, A. (2006). Bifaces from the Acheulian and Yabrudian layers of Tabun cave, Israel. In N. Goren-Inbar & G. Sharon (Eds.), Axe age: Acheulian toolmaking from quarry to discard (pp. 137–154). London: Equinox.

    Google Scholar 

  • Goder-Goldberger, M., Cheng, H., Edwards, R. L., Marder, O., Peleg, Y., Yeshurun, R., & Frumkin, A. (2012). Emanuel Cave: The site and its bearing on early Middle Paleolithic technological variability. Paléorient, 38, 203–225.

    Google Scholar 

  • Gopher, A., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., Karkanas, P., & Shahack-Gross, R. (2010). The chronology of the late Lower Paleolithic in the Levant based on U–Th ages of speleothems from Qesem Cave, Israel. Quaternary Geochronology, 5, 644–656.

    Article  Google Scholar 

  • Gopher, A., Barkai, R., Shimelmitz, R., Khalaly, M., Lemorini, C., Hershkovitz, I., & Stiner, M. (2005). Qesem Cave: An Amudian site in central Israel. Journal of the Israel Prehistoric Society, 35, 69–92.

    Google Scholar 

  • Gopher, A., Parush, Y., Assaf, E., & Barkai, R. (2015). Spatial aspects as seen from a density analysis of lithics at Middle Pleistocene Qesem Cave: Preliminary results and observations. Quaternary International. doi:10.1016/j.quaint.2015.09.078.

    Google Scholar 

  • Goren-Inbar, N. (1985). The lithic assemblage of the Berekhat Ram Acheulian site. Golan Heights. Paléorient, 11(1), 7–28.

    Article  Google Scholar 

  • Goren-Inbar, N. (1988). Too small to be true? Re-evaluation of cores on flakes in Levantine Mousterian assemblages. Lithic Technology, 17(1), 37–44.

    Google Scholar 

  • Goren-Inbar, N. (1990). The lithic assemblages. In N. Goren-Inbar (Ed.), Quneitra: A Mousterian site on the Golan heights. Qedem 31 (pp. 61–167). Jerusalem: Institute of Archeology, the Hebrew University of Jerusalem.

    Google Scholar 

  • Goren-Inbar, N. (1995). The Lower Palaeolithic of Israel. In T. E. Levi (Ed.), The archaeology of society in the Holy Land (pp. 93–109). London: Leicester University Press.

    Google Scholar 

  • Goren-Inbar, N., & Belfer-Cohen, A. (1998). The technological abilities of the Levantine Mousterians: Cultural and mental capacities. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 205–222). New York: Plenum Press.

    Google Scholar 

  • Goren-Inbar, N., Belitzky, S., Verosub, K., Werker, E., Kislev, M., Heimann, A., et al. (1992). New discoveries at the Middle Pleistocene Gesher Benot Ya‘aqov Acheulian site. Quaternary Research, 38, 117–128.

  • Goren-Inbar, N., Feibel, C. S., Verosub, K. L., Melamed, Y., Kislev, M. E., Tchernov, E., & Saragusti, I. (2000). Pleistocene milestones on the Out-of-Africa corridor at Gesher Benot Ya‘aqov, Israel. Science, 289, 944–947.

    Article  Google Scholar 

  • Goren-Inbar, N., Grosman, L., & Sharon, G. (2011). The record, technology and significance of the Acheulian giant cores of Gesher Benot Ya‘aqov, Israel. Journal of Archaeological Sciences, 38, 1901–1917.

  • Goren-Inbar, N., & Saragusti, I. (1996). An Acheulian biface assemblage from the site of Gesher Benot Ya‘aqov, Israel: Indications of African affinities. Journal of Field Archaeology, 23, 15–30.

  • Goren-Inbar, N., Werker, E., & Feibel, C. S. (2002). The Acheulian Site of Gesher Benot Ya‘aqov. Israel: The Wood Assemblage 1. Oxford: Oxbow Books.

  • Goring-Morris, A. N., Hovers, E., & Belfer-Cohen, A. (2009). The dynamics of Pleistocene and early Holocene settlement patterns and human adaptations in the Levant: An overview. In J. J. Shea & D. E. Lieberman (Eds.), Transitions in prehistory: Essays in honor of Ofer Bar-Yosef (pp. 185–252). Oxford: Oxbow Books.

    Google Scholar 

  • Grosman, L., Smikt, O., & Smilansky, U. (2008). On the application of 3-D scanning technology for the documentation and typology of lithic artefacts. Journal of Archaeological Science, 35, 3101–3110.

  • Grun, R., Stringer, C. B., & Schwarcz, H. P. (1991). ESR dating of teeth from Garrod’s Tabun Cave collection. Journal of Human Evolution, 20, 231–248.

    Article  Google Scholar 

  • Gvirtzman, G., Wieder, M., Marder, O., Khalaily, H., Rabinovich, R., & Ron, H. (1999). Geological and pedological aspects of an Early Paleolithic site: Revadim, Central Coastal Plain, Israel. Geoarchaeology, 14, 101–126.

    Article  Google Scholar 

  • Henrich, J. (2004). Demography and cultural evolution: How adaptive cultural processes can produce maladaptive losses—The Tasmanian case. American Antiquity, 69, 197–214.

    Article  Google Scholar 

  • Hiscock, P., Turq, A., Faivre, J. P., & Bourguignon, L. (2009). Quina procurement and tool production. In B. Adams & B. S. Blades (Eds.), Lithic materials and Paleolithic societies (pp. 232–246). Chichester: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Hooijer, D. A. (1961). The fossil vertebrates of Ksar’Akil, a Palaeolithic rock shelter in the Lebanon. Zoologische Verhandelingen (49th ed.). Leiden: E. J. Brill.

    Google Scholar 

  • Hopkinson, T. (2011). The transmission of technological skills in the Palaeolithic: Insights from metapopulation ecology. In B. W. Roberts & M. Vander-Linden (Eds.), Investigating archaeological cultures: Material culture, variability and transmission (pp. 229–244). New York: Springer.

    Chapter  Google Scholar 

  • Hopkinson, T., Nowell, A., & White, M. (2013). Life histories, metapopulation ecology, and innovation in the Acheulian. PaleoAnthropology. doi:10.4207/PA.2013.ART80.

    Google Scholar 

  • Horwitz, L. K., & Monchot, H. (2007). Sus, Hippopotamus, Bos and Gazella. In Chazan, M., & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 91–110). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Hours, F. (1975). The Lower Paleolithic of Lebanon and Syria. In F. Wendorf & A. Marks (Eds.), Problems in prehistory: North Africa and the Levant (pp. 249–271). Dallas: Southern Methodist University Press.

    Google Scholar 

  • Hours, F. (1979). La Fin de l’Acheuléen en Syrie du Nord, note préliminaire. Paléorient, 5, 9–16.

    Article  Google Scholar 

  • Hovers, E. (1997). Variability of lithic assemblages and settlement patterns in the Levantine Middle Paleolithic: Implications for the development of human behavior. Ph.D. thesis. Jerusalem: The Hebrew University of Jerusalem, Jerusalem.

  • Hovers, E. (2001). Territorial behavior in the Middle Paleolithic of the Southern Levant. In N. Conard (Ed.), Settlement dynamics of the Middle Paleolithic and Middle Stone Age (pp. 123–152). Tübingen: Tübingen Publications in Prehistory, Kerns Verlag.

  • Hovers, E. (2007). The many faces of cores-on-flakes: A perspective from the Levantine Mousterian. In S. P. McPherron & J. Lindly (Eds.), Cores or tools? The identification and study of alternative core technologies (pp. 42–74). Philadelphia: University of Philadelphia.

    Google Scholar 

  • Hovers, E. (2009). The lithic assemblages of Qafzeh Cave. Oxford: Oxford University Press.

    Google Scholar 

  • Hovers, E. (2012). Invention, reinvention and innovation: The makings of Oldowan lithic technology. In S. Elias (Ed.), Origins of human innovation and creativity (pp. 51–68). Developments in Quaternary Science, 16. Oxford: Elsevier B.V.

  • Hovers, E., Rak Y., & Ullman M. (in press). Nahal Amud. In Enzel, Y., & Bar-Yosef, O. (Eds.), Quaternary environments, climate change and humans in the Levant. Cambridge: Cambridge University Press.

  • Hovers, E., & Belfer-Cohen, A. (2006). Now you see it, now you don’t: Modern human behavior in the Middle Paleolithic. In E. Hovers & S. L. Kuhn (Eds.), Transitions before the transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 295–304). Springer: New York.

    Chapter  Google Scholar 

  • Hovers, E., & Belfer-Cohen, A. (2013). On variability and complexity: Lessons from the Levantine Middle Paleolithic record. Current Anthropology, 54(S8), S337–S357.

    Article  Google Scholar 

  • Hovers, E., Ekshtain, R., Greenbaum, N., Malinsky-Buller, A., Nir, N., & Yeshurun, R. (2014). Islands in a stream? Reconstructing site formation processes in the late Middle Paleolithic site of 'Ein Qashish, northern Israel. Quaternary International, 331, 216–233.

    Article  Google Scholar 

  • Howell, F. C. (1959). Upper Pleistocene stratigraphy and Early Man in the Levant. Proceedings of the American Philosophical Society, 193, 1–65.

    Google Scholar 

  • Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., et al. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In A. Berger, J. Imbrie, J. D. Hays, G. Kukla, & B. Saltzmann (Eds.), Milankovitch and climate: Understanding the response to astronomical forcing (Vol. 1, pp. 269–305). Dordrecht: Reidel.

    Google Scholar 

  • Inizan, M.-L., Reduron-Ballinger, M., Roche, H., & Tixier, J. (1999). Technology and terminology of knapped stone. Préhistoire de la pierre taillée 5. Nanterre: Cercle de Recherches et d’Études Préhistorique.

  • Isaac, G. L. (1972). Chronology and tempo of cultural change during the Pleistocene. In W. W. Bishop & J. Miller (Eds.), Calibration in hominid evolution (pp. 381–430). Edinburgh: Scottish Academic Press.

    Google Scholar 

  • Isaac, G. L. (1976). Stages of cultural elaboration in the Pleistocene: Possible archaeological indicators of the development of language capabilities. In S. R. Harnad, H. D. Stekelis, & J. Lancaster (Eds.), Origins and evolution of language and speech (pp. 275–288). New York: New York Academy of Science.

    Google Scholar 

  • Isaac, G. L. (1977). Olorgesailie: Archaeological studies of a Middle Pleistocene lake basin, Kenya. Chicago: The University of Chicago Press.

    Google Scholar 

  • Jagher, R. (2011). Nadaouiyeh Aïn Askar: Acheulean variability in the central Syrian desert. In Le Tensorer, J.-M., Jagher, R., & Otte, M. (Eds.), The Lower and Middle Palaeolithic in the Middle East and neighboring regions. ERAUL 126 (pp. 197–208). Liége: Université de Liège.

  • Jelinek, A. J. (1975). A preliminary report on some Lower and Middle Paleolithic industries from the Tabun Cave, Mount Carmel (Israel). In F. Wendorf & A. E. Marks (Eds.), Problems in prehistory: North Africa and the Levant (pp. 279–316). Dallas: Southern Methodist University Press.

    Google Scholar 

  • Jelinek, A. J. (1982a). The Tabun cave and Paleolithic man in the Levant. Science, 216(4553), 1369–1375.

    Article  Google Scholar 

  • Jelinek, A. J. (1982b). The Middle Paleolithic in the southern Levant, with comments on the appearance of modern Homo sapiens. In A. Ronen (Ed.), The transition from Lower to Middle Paleolithic and the origin of modern Man (pp. 57–101). BAR International Series 151. Oxford: Archaeopress.

  • Jelinek, A. J. (1990). The Amudian in the context of the Mugharan tradition at the Tabun Cave (Mount Carmel), Israel. In P. Mellars (Ed.), The emergence of modern humans (pp. 81–90). Ithica: Cornell University Press.

    Google Scholar 

  • Jelinek, A. J., Farrand, W. R., Hass, G., Horowitz, A., & Goldberg, P. (1973). New excavations at the Tabun Cave, Mount Carmel, Israel: A preliminary report. Paléorient, 1, 151–183.

    Article  Google Scholar 

  • Kandler, A., & Laland, K. N. (2009). An investigation of the relationship between innovation and cultural diversity. Theoretical Population Biology, 76, 59–67.

    Article  Google Scholar 

  • Klein, R. G. (2000). The Earlier Stone Age of Southern Africa. The South African Archaeological Bulletin, 55(172), 107–122.

  • Kleindienst, M. R. (1961). Variability within the late Acheulian assemblage in Eastern Africa. South African Archaeological Journal, 16, 35–52.

    Article  Google Scholar 

  • Kleindienst, M. R. (1962). Components of the East African Acheulian assemblage: An analytic approach. In G. Mortelmans & J. Nenquin (Eds.), Actes du IVème Congrès Panafricain de Préhistoire et de L’étude du Quaternaire (pp. 81–111). Tervuren: Musée Royal de L’Afrique Centrale.

    Google Scholar 

  • Kolska-Horwitz, L., & Tchernov, E. (1989). The Late Acheulian fauna from Oumm Zinat. Journal of the Israel Prehistoric Society, 22, 7–14.

    Google Scholar 

  • Kuhn, S. L. (1990). A geometric index of reduction for unifacial stone tools. Journal of Archaeological Science, 17, 583–593.

    Article  Google Scholar 

  • Kuhn, S. L. (1995). Mousterian lithic technology: An ecological perspective. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Lahr, M. M., & Foley, R. A. (1998). Towards a theory of modern human origins: Geography, demography, and diversity in recent human evolution. Yearbook of Physical Anthropology, 41, 137–176.

    Article  Google Scholar 

  • Lamotte, A. (2001). Les industries à bifaces de l’Europe du Nord-Ouest au Pléistocène Moyen: L’apport des donnés des gisements du bassin de la Somme, de l’Escaut et de la Baie de St-Brieuc. BAR International Series 932. Oxford: Archaeopress.

  • Le Tensorer, J.-M., Jagher, R., Rentzel, P., Hauck, T., Ismail-, Meyer K., Pümpin, C., & Wojtczak, D. (2007). Long-term site formation processes at the natural springs Nadaouiyeh and Hummal in the El Kowm Oasis. Central Syria. Geoarchaeology, 22(6), 621–639.

    Article  Google Scholar 

  • Le Tensorer, J.-M., von Falkenstein, V., Le Tensorer, H., & Muhesen, S. (2011). Hummal: A very long Paleolithic sequence in the steppe of central Syria—Considerations on Lower Paleolithic and the beginning of Middle Paleolithic. In J. M. Le Tensorer, R. Jagher, & M. Otte (Eds.), The Lower and Middle Palaeolithic in the Middle East and Neighboring Regions (pp. 235–248). Liège: ERAUL.

  • Lev, Z. (2010). Techno-typological analysis of a Yabrudian assemblage from Qesem Cave, Israel. M.A. thesis. Tel Aviv: Tel Aviv University (in Hebrew).

  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. doi:10.1029/2004PA001071.

    Google Scholar 

  • Lisker, S., Vaks, A., Bar-Matthews, M., Porat, N., & Frumkin, A. (2009). Stromatolites in caves of the Dead Sea Fault Escarpment: Implications to latest Pleistocene lake levels and tectonic subsidence. Quaternary Science Reviews, 28, 80–92.

    Article  Google Scholar 

  • Lister, A. M. (2007). Cervidae. In Chazan, M., & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 111–122). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Lister, A. M., Dirks, W., Assaf, A., Chazan, M., Goldberg, P., Applbaum, Y. H., et al. (2013). New fossil remains of Elephas from the southern Levant: Implications for the evolutionary history of the Asian elephant. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 119–130.

    Article  Google Scholar 

  • Lycett, S. J., & Gowlett, J. A. J. (2008). On questions surrounding the Acheulean ‘tradition’. World Archaeology, 40(3), 295–315.

  • Madsen, B., & Goren-Inbar, N. (2004). Acheulian giant core technology and beyond: An archaeological and experimental case study. Eurasian Prehistory, 2, 3–52.

    Google Scholar 

  • Malinsky-Buller, A. (2014). Contextualizing curational strategies at the Lower Paleolithic site of Holon, Israel. PaleoAnthropology. doi:10.4207/PA.2014.ART87.

    Google Scholar 

  • Malinsky-Buller, A. (2015). Lost and found: Technological trajectories within Lower/Middle Paleolithic transition in Western Europe, North of the Pyrenees. Quaternary International. doi:10.1016/j.quaint.2015.09.079.

    Google Scholar 

  • Malinsky-Buller, A., Barzilai, O., Ayalon., Bar-Matthews, M., Birkenfeld, M., Porat, N., et al. (in preparation). Age and paleoenvironment of the Lower Paleolithic site of Kefar Menachem West, Israel.

  • Malinsky-Buller, A., Grosman, L., & Marder, O. (2011a). A case of techno-typological lithic variability and continuity in the late Lower Palaeolithic. Before Farming, 1, 1–32.

    Article  Google Scholar 

  • Malinsky-Buller, A., Hovers, E., & Marder, O. (2011b). Making time: ‘Living floors’, ‘palimpsests’ and site formation processes—A perspective from the open-air Lower Paleolithic site of Revadim Quarry, Israel. Journal of Anthropological Archaeology, 30, 89–101.

    Article  Google Scholar 

  • Marder, O. (2009). Book review of M. Chazan and L. K. Horwitz (Eds). 2007. Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge. Journal of the Israel Prehistoric Society, 39, 185–188.

    Google Scholar 

  • Marder, O., Gvirtzman, G., Ron, H., Khalaily, H., Wieder, M., Bankirer, R., et al. (1998). The Lower Paleolithic site of Revadim quarry, preliminary finds. Journal of the Israel Prehistoric Society, 28, 21–53.

    Google Scholar 

  • Marder, O., Malinsky-Buller, A., Shahack-Gross, R., Ackermann, O., Ayalon, A., Bar-Matthews, M., et al. (2011). Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site of Revadim (Israel). Journal of Human Evolution, 60(4), 508–522.

    Article  Google Scholar 

  • Marder, O., Milevski, I., & Matskevich, Z. (2006). The handaxes of Revadim quarry: Typo technological considerations and aspects of intra site variability. In N. Goren-Inbar & G. Sharon (Eds.), Axe age: Acheulian tool-making from quarry to discard (pp. 223–242). London: Equinox.

    Google Scholar 

  • Martínez-Navarro, B., & Rabinovich, R. (2011). The fossil bovidae (artiodactyla, mammalia) from Gesher Benot Ya‘aqov, Israel. Journal of Human Evolution, 60(4), 375–386.

    Article  Google Scholar 

  • Maul, L., Bruch, A. A., Smith, K. T., Shenbrot, G., Barkai, R., & Gopher, A. (2015). Palaeoecological and biostratigraphical implications of the microvertebrates of Qesem Cave in Israel. Quaternary International. doi:10.1016/j.quaint.2015.04.032.

    Google Scholar 

  • Maul, L. C., Smith, K. T., Barkai, R., Barash, A., Karkanas, P., Shahack-Gross, R., & Gopher, A. (2011). Microfaunal remains at Middle Pleistocene Qesem Cave, Israel: Preliminary results on small vertebrates, environment and biostratigraphy. Journal of Human Evolution, 60(4), 464–480.

    Article  Google Scholar 

  • McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.

    Article  Google Scholar 

  • McBrearty, S., & Tryon, C. A. (2006). From Acheulian to Middle Stone Age in the Kapthurin Formation, Kenya. In E. Hovers & S. L. Kuhn (Eds.), Transitions before the transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 257–277). New York: Springer.

    Chapter  Google Scholar 

  • McDermott, F., Grun, R., Stringer, C. B., & Hawkesworth, C. J. (1993). Mass-spectrometric U-series dates for Israeli Neanderthal/Early Modern hominid sites. Nature, 363, 252–255.

    Article  Google Scholar 

  • McPherron, S. P. (1994). A reduction model for variability in Acheulian biface morphology. Ph.D. thesis. Pennsylvania: University of Pennsylvania.

  • McPherron, S. P. (1999). Ovate and pointed handaxe assemblages: Two points make a line. Préhistoire Européenne, 14, 9–32.

    Google Scholar 

  • McPherron, S. P. (2003). Technological and typological variability in the bifaces from Tabun Cave, Israel. In M. Soressi & H. L. Dibble (Eds.), Multiple approaches to the study of bifacial technologies (pp. 55–76). Philadelphia: Museum of Archaeology and Anthropology, University of Pennsylvania.

    Google Scholar 

  • Meignen, L. (1994). Paléolithique moyen au Proche-Orient: Le phénomène laminaire. In Revillion, S., & Tuffreau, A. (Eds.), Les industries laminaires au Paléolithique moyen. Dossier de Documentation Archéologique (vol. 18, pp. 125–159). Paris: Editions CNRS.

  • Meignen, L. (1998). A preliminary report on Hayonim Cave lithic assemblages in the context of the Near Eastern Middle Palaeolithic. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and Modern Humans in Western Asia (pp. 165–180). New York: Plenum Press.

    Google Scholar 

  • Meignen, L. (2000). Early Middle Paleolithic blade technology in Southwestern Asia. Acta Anthrpologica Sinica, 19(Supplement), 158–168.

    Google Scholar 

  • Meignen, L. (2007). Middle Paleolithic blade assemblages in the Near East: A reassessment. In K. A. Amirkhanov, S. A. Vasil’ev, & E. V. Belyaeva (Eds.), Caucasus and the initial dispersals in the Old World (pp. 133–148). St Petersburg: Institute of the History of Material Culture.

    Google Scholar 

  • Meignen, L. (2011). The contribution of Hayonim cave assemblages to the understanding of the so-called Early Levantine Mousterian. In Le Tensorer, J.-M., Jagher, R., & Otte, M. (Eds.) The Lower and Middle Paleolithic in the Middle East and neighboring regions. ERAUL 126 (pp. 85–100). Liège: Université de Liège.

  • Meignen, L., Bar-Yosef, O., Speth, J. D., & Stiner, M. C. (2006). Middle Paleolithic settlement patterns in the Levant. In E. Hovers & S. L. Kuhn (Eds.), Transitions before the transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 149–169). New York: Springer.

    Chapter  Google Scholar 

  • Mercier, N., & Valladas, H. (2003). Reassessment of TL age estimates of burnt flints from the Paleolithic site of Tabun Cave, Israel. Journal of Human Evolution, 45, 401–409.

    Article  Google Scholar 

  • Mercier, N., Valladas, H., Falgueres, C., Shao, Q., Gopher, A., Barkai, R., et al. (2013). New dating of Amudian layers at Qesem Cave (Israel): Results of TL applied to burnt flints and ESR/U-series to teeth. Journal of Archaeological Science, 40(7), 3011–3020.

    Article  Google Scholar 

  • Mercier, N., Valladas, H., Froget, L., Joron, J. L., Reyss, J. L., Weiner, S., et al. (2007). Hayonim Cave: A TL-based chronology for this Levantine Mousterian sequence. Journal of Archaeological Science, 34(7), 1064–1077.

    Article  Google Scholar 

  • Mercier, N., Valladas, H., Froget, L., Joron, J.-L., & Ronen, A. (2000). Datation par thermoluminescence de la base du gisement Paléolithique de Tabun (Mont Carmel, Israel). Comptes Rendus Académie des Sciences, 330, 731–738.

    Google Scholar 

  • Mercier, N., Valladas, H., Valladas, G., Reyss, J. L., Jelinek, A., Meignen, L., & Joron, J. L. (1995). TL dates of burnt flints from Jelinek’s excavations at Tabun and their implications. Journal of Archaeological Science, 22, 495–509.

    Article  Google Scholar 

  • Moncel, M.-H., Moigne, A.-M., & Combier, J. (2005). Pre-Neandertal behaviour during isotopic stage 9 and the beginning of stage 8: New data concerning fauna and lithics in the different occupation levels of Orgnac 3 (Ardèche, South-East France): occupation types. Journal of Archaeological Science, 32(9), 1283–1301.

    Article  Google Scholar 

  • Moncel, M.-H., Moigne, A.-M., & Combier, J. (2012). Towards the Middle Palaeolithic in Western Europe: The case of Orgnac 3 (southeastern France). Journal of Human Evolution, 63(5), 653–666.

    Article  Google Scholar 

  • Moncel, M.-H., Moigne, A.-M., Sam, Y., & Combier, J. (2011). The emergence of Neanderthal technical behavior: New evidence from Orgnac 3 (Level 1, MIS 8), southeastern France. Current Anthropology, 52(1), 37–75.

    Article  Google Scholar 

  • Monchot, H., &, Horwitz, L.H. (2007). Taxon representation and age and sex distribution. In Chazan, M., & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 85–88). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Monigal, K. (2002). The Levantine Leptolithic: Blade production from the Lower Paleolithic to the dawn of the Upper Paleolithic. Ph.D. thesis. Dallas: Southern Methodist University.

  • Monnier, G. F. (2006). The Lower/Middle Paleolithic periodization in Western Europe. Current Anthropology, 47(5), 709–744.

    Article  Google Scholar 

  • Muhesen, S. (1981). The Upper Acheulian in Syria. In Cauvin, J. & Sanlaville, P. (Eds.), Préhistoire du Levant: Chronologie et organisation de l’espace depuis les origines jusqu’au VI e millénaire, Lyon 10–14 Juin 1980. Colloques Internationaux du CNRS 598 (pp. 185–191). Paris: Editions Centre National de la Recherche Scientifique (CNRS).

  • Muhesen, S. (1985). L’Acheuléen récent évolué de Syrie. BAR International Series 248. Oxford: Archaeopress.

  • Munday, F. (1976). Intersite variability in the Mousterian of the Central Negev. In A. E. Marks (Ed.), Prehistory and palaeoenvironments in the Central Negev, Israel. Vol. I: The Avdat/Aqev Area. Part 1 (pp. 113–140). Dallas: Southern Methodist University Press.

    Google Scholar 

  • Neiman, F. D. (1995). Stylistic variation in evolutionary perspective: Inferences from decorative diversity and interassemblage distance in Illinois Woodland ceramic assemblages. American Antiquity, 60, 7–36.

    Article  Google Scholar 

  • Neuville, R. (1931). L’Acheuléen supérieur de la grotte d’Oumm-Qatafa (Palestine). L’Anthropologie, 41(13–51), 249–263.

    Google Scholar 

  • Neuville, R. (1951). Le Paléolithique et le Mésolithique du désert de Judée. Paris: Masson et CIE.

    Google Scholar 

  • Newcomer, M. H. (1971). Some quantitative experiments in handaxe manufacture. World Archaeology, 3(1), 85–94.

    Article  Google Scholar 

  • Newcomer, M. H., & Hivernel-Guerre, F. (1974). Nucleus sur éclat: Technologie et utilisation par différentes cultures préhistoriques. Bulletin de la Societé Préhistorique Française, 71, 119–128.

    Article  Google Scholar 

  • Nishiaki, Y. (1989). Early blade industries in the Levant: The placement of Douara IV industry in the context of the Levantine early Middle Paleolithic. Paléorient, 15, 215–229.

    Article  Google Scholar 

  • Nishiaki, Y., & Akazawa, T. (2015). Patterning of the early Middle Paleolithic occupations at Douara Cave and its implications for settlement dynamics in the Palmyra basin, Syria. L’Anthropologie, 119(5), 519–541.

    Article  Google Scholar 

  • Nowell, A., & White, M. J. (2010). Growing up in the Middle Pleistocene: Life history strategies and their relationship to Acheulian industries. In A. Nowell & I. Davidson (Eds.), Stone tools and the evolution of human cognition (pp. 67–82). Boulder: University Press of Colorado.

    Google Scholar 

  • Noy, T., & Issar, A. (1971). Holon. Revue Biblique, 78, 581–582.

    Google Scholar 

  • O’Brien, M. J., & Shennan, S. J. (Eds.). (2010). Innovation in cultural systems: Contributions from evolutionary anthropology. Cambridge: MIT Press.

    Google Scholar 

  • Parush, Y., Assaf, E., Slon, V., Gopher, A., & Barkai, R. (2015a). Looking for sharp edges: Modes of flint recycling at Middle Pleistocene Qesem Cave, Israel. Quaternary International, 361, 61–87.

    Article  Google Scholar 

  • Parush, Y., Gopher, A., & Barkai, R. (2015b). Amudian versus Yabrudian under the rock shelf: A study of two lithic assemblages from Qesem Cave, Israel. Quaternary International. doi:10.1016/j.quaint.2015.01.050.

    Google Scholar 

  • Pelegrin, J. (1990). Prehistoric lithic technology: Some aspects of research. Archaeological Review from Cambridge, 9(1), 116–125.

    Google Scholar 

  • Perpére, M. (1986). Apport de la typométrie à la définition des éclats Levallois. Bulletin de la Société Préhistorique Française, 83, 115–118.

    Article  Google Scholar 

  • Perrot, J. (1968). La préhistoire palestinienne. Supplément au Dictionnaire de la Bible (vol. 8, pp. 186–446). Paris: Letouzey and Ané.

  • Porat, N. (2007). Luminescence and electron spin resonance dating. In Chazan, M., & Horwitz, L. K. (Eds.), Holon: A Lower Paleolithic site in Israel. American School of Prehistoric Research Bulletin 50 (pp. 17–26). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Porat, N., Chazan, M., Schwarcz, H., & Horwitz, L. K. (2002). Timing of the Lower to Middle Paleolithic boundary: New dates from the Levant. Journal of Human Evolution, 43, 107–122.

    Article  Google Scholar 

  • Porat, N., Zhou, L. P., Chazan, M., Noy, T., & Horwitz, L. K. (1999). Dating the Lower Paleolithic open-air site of Holon, Israel by luminescence and ESR techniques. Quaternary Research, 51, 328–341.

    Article  Google Scholar 

  • Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. Science, 324, 1298–1301.

    Article  Google Scholar 

  • Premo, L. S., & Kuhn, S. L. (2010). Modeling effects of local extinctions on culture change and diversity in the Paleolithic. PLoS One. doi:10.1371/journal.pone.0015582.

    Google Scholar 

  • Rabinovich, R., Ackermann, O., Aladjem, E., Barkai, R., Biton, R., Milevski, I., et al. (2012). Elephants at the Middle Pleistocene Acheulian open-air site of Revadim Quarry, Israel. Quaternary International, 276–277, 183–197.

    Article  Google Scholar 

  • Rabinovich, R., & Biton, R. (2011). Early-Middle Pleistocene faunal assemblages of Gesher Benot Ya‘aqov: Inter-site variability. Journal of Human Evolution, 60, 357–374.

    Article  Google Scholar 

  • Renfrew, C. (1978). The anatomy of innovation. In C. Renfrew (Ed.), Approaches to social archaeology (pp. 390–418). Cambridge: Harvard University Press.

    Google Scholar 

  • Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Richter, D., Hauck, T., Wojtczak, D., Le Tensorer, J.-M., & Muhesen, S. (2011). Chronometric age estimation for the site of Hummal (El-Kowm, Syria). In Le Tensorer, J.-M., Jagher, R., & Otte, M. (Eds.), The Lower and Middle Palaeolitihic in the Middle East and neighbouring regions. ERAUL 126 (pp. 289–307). Liège: Université de Liège.

  • Rink, W. J., Schwarcz, H. P., Ronen, A., & Tsatskin, A. (2004a). Confirmation of a near 400 ka age for the Yabrudian industry at Tabun Cave, Israel. Journal of Archaeological Science, 31, 15–20.

    Article  Google Scholar 

  • Rink, W. J., Schwarcz, H. P., Weiner, S., Goldberg, P., Meignen, L., & Bar-Yosef, O. (2004b). Age of Mousterian industry at Hayonim Cave, northern Israel. Journal of Archaeological Science, 31(7), 953–964.

    Article  Google Scholar 

  • Roe, D. A. (Ed.) (1983). Adlan in the Stone Age: The excavations of D. A. E. Garrod in the Lebanon, 19581963. BAR International Series 159. Oxford: British Archaeological Reports.

  • Roebroeks, W., & Corbey, R. (2001). Biases and double standards in palaeoanthropology. In R. Corbey & W. Roebroeks (Eds.), Studying human origins: Disciplinary history and epistemology (pp. 67–76). Amsterdam: Amsterdam University Press.

    Google Scholar 

  • Rohling, E. J., Grant, K. M., Roberts, A. P., & Larrasoaña, J.-C. (2013). Paleoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years: Implications for hominin migrations. Current Anthropology, 54(S8), S183–S201.

    Article  Google Scholar 

  • Rollefson, G. O. (1978). A quantitative and qualitative typological analysis of bifaces from the Tabun excavations, 1967–1972. Ph.D. thesis. Tucson: University of Arizona.

  • Rollefson, G. O. (1983). Two seasons of excavation at Ain el’Assad, eastern Jordan. Bulletin of the American Schools of Oriental Research, 252, 25–34.

    Article  Google Scholar 

  • Rollefson, G. O., Schnurrenberger, D., Quintero, L., Watson, R., & Low, R. (1997). Ain Soda and Ain Qasiya: New later Pleistocene and early Holocene sites in the Azraq Shishan area, eastern Jordan. In Z. Gebel, H. G. Kafafi, & G. Rollefson (Eds.), The prehistory of Jordan II. Perspectives from 1997 (pp. 45–58). Berlin: Ex Oriente.

    Google Scholar 

  • Ron, H., Porat, N., Ronen, A., Tchernov, E., & Kolska Horwitz, L. (2003). Magnetostratigraphy of the Evron Member: Implications for the age of the Middle Acheulian site of Evron Quarry. Journal of Human Evolution, 44, 633–639.

    Article  Google Scholar 

  • Ronen, A. (Ed.) (1982). The transition from Lower to Middle Palaeolithic and the origin of modern Man. BAR International Series 151. Oxford: Archaeopress.

  • Ronen, A. (1991). The Lower Palaeolithic site Evron-Quarry in western Galilee, Israel. Sonderveröffentlichungen des Geologischen lnstituts der Universität zu Köln, 82, 187–212.

    Google Scholar 

  • Ronen, A., Ohel, M., Lamdan, M., & Assaf, A. (1980). Acheulean artifacts from two trenches at Ma’ayan Barukh. Israel Exploration Journal, 30, 17–33.

    Google Scholar 

  • Rosell, J., Blasco, R., Fernandez Peris, J., Carbonell, E., Barkai, R., & Gopher, A. (2015). Recycling bones in the Middle Pleistocene: Some reflections from Gran Dolina TD10-1 (Spain), Bolomor Cave (Spain) and Qesem Cave (Israel). Quaternary International, 361, 297–312.

    Article  Google Scholar 

  • Roskin, J., Katra, I., Porat, N., & Zilberman, E. (2013). Evolution of Middle to Late Pleistocene sandy calcareous paleosols underlying the northwestern Negev Desert Dunefield (Israel). Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 134–152.

    Article  Google Scholar 

  • Rust, A. (1950). Die Hohlenfunde von Jabrud (Syrien). Neumunster: Karl Wachholtz.

    Google Scholar 

  • Sackett, J. R. (1991). Straight archaeology French-style: The phylogenetic paradigm in historic perspective. In G. A. Clark (Ed.), Perspectives on the past: Theoretical biases in Mediterranean hunter-gatherer research (pp. 109–139). Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Sahle, Y., Morgan, L. E., Braun, D. R., Atnafu, B., & Hutchings, W. K. (2014). Chronological and behavioral contexts of the earliest Middle Stone Age in the Gademotta Formation, Main Ethiopian Rift. Quaternary International, 331, 6–19.

    Article  Google Scholar 

  • Santoja, M., & Villa, P. (2006). The Acheulean of western Europe. In N. Goren-Inbar & G. Sharon (Eds.), Axe age: Acheulian tool-making from quarry to discard (pp. 429–478). London: Equinox.

    Google Scholar 

  • Santonja, M., Pérez-González, A., Domínguez-Rodrigo, M., Panera, J., Rubio-Jara, S., Sesé, C., et al. (2014). The Middle Paleolithic site of Cuesta de la Bajada (Teruel, Spain): A perspective on the Acheulean and Middle Paleolithic technocomplexes in Europe. Journal of Archaeological Science, 49, 556–571.

    Article  Google Scholar 

  • Schroeder, B. (1969). The lithic industries from Jerf Ajla and their bearing on the problem of a Middle to Upper Paleolithic transition. Ph.D. thesis. New York: Columbia University.

  • Schwarcz, H. P., Goldberg, P., & Blackwell, B. (1980). Uranium series dating of archaeolgical sites in Israel. Israel Journal of Earth Sciences, 29, 157–165.

    Google Scholar 

  • Schwarcz, H. P., & Rink, W. J. (2001). Dating methods for sediments of caves and rockshelters with examples from the Mediterranean Region. Geoarchaeology, 16, 355–371.

    Article  Google Scholar 

  • Shackleton, N. J. (2000). The 100,000-year Ice-Age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289, 1897–1902.

    Article  Google Scholar 

  • Shackleton, N. J., & Opdyke, N. D. (1973). Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3(1), 39–55.

    Article  Google Scholar 

  • Sharon, G. (2007). Acheulian large flake industries: Technology, chronology, and significance. BAR International Series 1701. Oxford: Archaeopress.

  • Sharon, G. (2014). The early prehistory of Western and Central Asia. In C. Renfrew & P. Bahn (Eds.), The Cambridge world prehistory (pp. 1357–1378). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sharon, G., Alperson-Afil, N., & Goren-Inbar, N. (2011). Cultural conservatism and variability in the Acheulian sequence of Gesher Benot Ya‘aqov. Journal of Human Evolution, 60(4), 387–397.

    Article  Google Scholar 

  • Sharon, G., Feibel, C., Harlavan, Y., Feraud, G., Ashkenazi, S., Alperson-Afil, N., & Rabinovich, R. (2010). New evidence for the northern Dead Sea rift Acheulian. PaleoAnthopology. doi:10.4207/PA.2010.ART35.

    Google Scholar 

  • Sharon, G., Zaidner, Y., & Hovers, E. (2014). Opportunities, problems and future directions in the study of open-air Middle Paleolithic sites. Quaternary International, 331, 1–5.

    Article  Google Scholar 

  • Shaw, A.D. (2008). The earlier Palaeolithic of Syria: Settlement history, technology and landscape-use in the Orontes and Euphrates valleys. Ph.D. thesis. Durham: University of Durham.

  • Shennan, S. (2001). Demography and cultural innovation: A model and its implications for the emergence of modern human culture. Cambridge Archaeological Journal, 11, 5–16.

    Article  Google Scholar 

  • Shennan, S. (2011). Descent with modification and the archaeological record. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1070–1079.

    Article  Google Scholar 

  • Shifroni, A. & Ronen, A. (2000). Observations on the Yabrudian of Tabun Cave, Israel. In Ronen, A., & Weinstein-Evron, M. (Eds.) Toward Modern Humans: Yabrudian and Micoquian, 40050 k-years ago. BAR International Series 850 (pp. 119–132). Oxford: Archaeopress.

  • Shimelmitz, R. (2009). Lithic blade production in the Middle Pleistocene of the Levant. Unpublished Ph.D. thesis. Tel Aviv: Tel Aviv University.

  • Shimelmitz, R., Barkai, R., & Gopher, A. (2011). Systematic blade production at late Lower Paleolithic (400–200 kyr) Qesem Cave, Israel. Journal of Human Evolution, 61, 458–479.

    Article  Google Scholar 

  • Shimelmitz, R., Barkai, R., & Gopher, A. (2015). Regional variability in late Lower Paleolithic Amudian blade technology: Analyzing new data from Qesem, Tabun and Yabrud I. Quaternary International. doi:10.1016/j.quaint.2015.02.037.

    Google Scholar 

  • Shimelmitz, R., & Kuhn, S. L. (2013). Early Mousterian Levallois technology in Unit IX of Tabun cave. PaleoAnthropology. doi:10.4207/PA.2013.ART77.

    Google Scholar 

  • Shimelmitz, R., Kuhn, S. L., Jelinek, A. J., Ronen, A., Clark, A. E., & Weinstein-Evron, M. (2014a). ‘Fire at will’: The emergence of habitual fire use 350,000 years ago. Journal of Human Evolution, 77, 196–203.

    Article  Google Scholar 

  • Shimelmitz, R., Kuhn, S. L., Ronen, A., & Weinstein-Evron, M. (2014b). Predetermined flake production at the Lower/Middle Paleolithic boundary: Yabrudian scraper blank technology. PLoS One. doi:10.1371/journal.pone.0106293.

    Google Scholar 

  • Skinner, J. H. (1970). El Masloukh: A Yabrudian site in Lebanon. Bulletin du Musée de Beyrouth, 23, 143–172.

    Google Scholar 

  • Solecki, R. L., & Solecki, R. S. (1970). A new secondary flaking technique at the Nahr Ibrahim cave site. Bulletin du Musée de Beyrouth, 23, 137–142.

    Google Scholar 

  • Solecki, R. L., & Solecki, R. S. (1986). A reappraisal of Rust’s cultural stratigraphy of Yabroud Shelter I. Paléorient, 12(1), 53–59.

    Article  Google Scholar 

  • Solodenko, N. (2010). On tools and elephants: An analysis of a lithic assemblage from Area B of the Late Acheulian site Revadim Quarry. M.A. thesis. Tel Aviv: Tel Aviv University (in Hebrew).

  • Stekelis, M. (1960). The Palaeolithic deposits of Jisr Banat Yaqub. Bulletin of the Research Council of lsrael, 9(2–3), 61–90.

    Google Scholar 

  • Stekelis, M., & Gilead, D. (1966). Ma’ayan Barukh: A Lower Paleolithic site in Upper Galilee. Journal of the Israel Prehistoric Society, 8, 1–23.

    Google Scholar 

  • Stiner, M. (2005). The faunas of Hayonim cave, Israel: A 200,000 record of paleolithic diet, demography and society. American School of Prehistoric Research Bulletin 48. Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

  • Tchernov, E., Horwitz, L. K., Ronen, A., & Lister, A. (1994). The faunal remains from Evron Quarry in relation to other Lower Paleolithic hominid sites in the southern Levant. Quaternary Research, 42, 328–339.

    Article  Google Scholar 

  • Tixier, J., Inizan, M-L., & Roche, H. (1980). Terminologie et technologie. Préhistoire de la pierre taillée 1. Paris: Cercle de Recherches et d’Études Préhistoriques.

  • Tomásková, S. (2005). What is a burin? Typology, technology, and interregional comparison. Journal of Archaeological Method and Theory, 12, 79–115.

    Article  Google Scholar 

  • Torfstein, A., Goldstein, S. L., Stein, M., & Enzel, Y. (2013). Impacts of abrupt climate changes in the Levant from last glacial Dead Sea levels. Quaternary Science Review. doi:10.1016/j.quascirev.2013.02.015.

    Google Scholar 

  • Tostevin, G. B. (2000). Behavioral change and regional variation across the Middle to Upper Paleolithic transition in Central Europe, Eastern Europe, and the Levant. Ph.D. thesis. Cambridge: Harvard University.

  • Tostevin, G. B. (2011). An introduction to the special issue: Reduction sequence, chaîne opératoire, and other methods: The epistemologies of different approaches to lithic analysis. PaleoAnthropology. doi:10.4207/PA.2011.ART59.

    Google Scholar 

  • Tryon, C. A., & Faith, J. T. (2013). Variability in the Middle Stone Age of eastern Africa. Current Anthropology, 54(S8), S234–S254.

    Article  Google Scholar 

  • Tryon, C. A., & McBrearty, S. (2006). Tephrostratigraphy of the Bedded Tuff Member (Kapthurin Formation, Kenya) and the nature of archaeological change in the later Middle Pleistocene. Journal of Human Evolution, 65, 492–507.

    Google Scholar 

  • Tryon, C. A., McBrearty, S., & Texier, J.-P. (2005). Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origins and Middle Stone Age diversity. African Archaeological Review, 22, 199–229.

    Article  Google Scholar 

  • Turq, A. (1992). Raw material and technological studies of the Quina Mousterian in Perigord. In H. L. Dibble & P. Mellars (Eds.), The Middle Paleolithic: Adaptation, behavior, and variability (pp. 75–85). Philadelphia: University Museum, University of Pennsylvania.

    Google Scholar 

  • Turq, A., Roebroeks, W., Bourguignon, L., & Faivre, J.-P. (2013). The fragmented character of Middle Palaeolithic stone tool technology. Journal of Human Evolution, 65(5), 641–655.

    Article  Google Scholar 

  • Turville-Petre, F. (1927). Researches in prehistoric Galilee 1925–1926. London: British School of Archaeology in Jerusalem.

    Google Scholar 

  • Ullman, M. (2014). Levantine cave dwellers: Site selection patterns of early hominins: A case study from Nahal Amud, Northern Israel (MA thesis). Hebrew University of Jerusalem.

  • Ullman, M., Hovers, E., Goren-Inbar, N., & Frumkin, A. (2013). Levantine cave dwellers: Geographic and environmental aspects of early human use of caves: A case study from Wadi Amud, northern Israel. In Filippi, M., & Bosak, P. (Eds.), Proceedings of 16th International Congress of Speleology (vol. 1, pp. 169–174), Brno.

  • Valladas, H., Mercier, N., Hershkovitz, I., Zaidner, Y., Tsatskin, A., Yeshurun, R., et al. (2013). Dating the Lower-Middle Paleolithic transition in the Levant: A view from Misliya Cave, Mount Carmel. Israel. Journal of Human Evolution, 65(5), 585–593.

    Article  Google Scholar 

  • Valladas, H., Mercier, N., Joron, J.-L., & Reyss, J.-L. (1998). GIF laboratory dates for Middle Paleolithic Levant. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and Modern Humans in Asia (pp. 69–76). New York: Plenum Press.

    Google Scholar 

  • Van Peer, P. (1992). The Levallois reduction strategy. Monographs in World Archaeology 13. Madison: Prehistory Press.

  • Van Peer, P. (1995). Current issues in the Levallois problem. In H. L. Dibble & O. Bar-Yosef (Eds.), The definition and interpretation of Levallois technology. Monographs in World Archaeology 23 (pp. 1–10). Madison: Prehistory Press.

  • Verjux, C., & Rousseau, D.-D. (1986). La retouche Quina: Une mise au point. Bulletin de la Société Préhistorique Française, 11–12, 404–415.

    Article  Google Scholar 

  • Villa, P. (2009). The Lower to Middle Paleolithic transition. In M. Camps & P. R. Chauhan (Eds.), Sourcebook of Paleolithic Transitions: Methods, Theories and Interpretation (pp. 265–273). New York: Springer.

  • Weiner, S., Goldberg, P., & Bar-Yosef, O. (2002). Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. Journal of Archaeological Science, 29, 1289–1308.

    Article  Google Scholar 

  • White, M. J. (1995). Raw materials and biface variability in Southern Britain: A preliminary examination. Lithics 15, 1–20.

  • White, M. J. (1998). On the significance of Acheulean biface variability in Southern Britain. Proceedings of the Prehistoric Society, 64, 15–44.

  • White, M. J., & Ashton, N. M. (2003). Lower Palaeolithic core technology and the origins of the Levallois method in north-western Europe. Current Anthropology, 44, 598–609.

    Article  Google Scholar 

  • White, M., Ashton, N., & Scott, B. (2011). The emergence, diversity and significance of Mode 3 (prepared core) technologies. In N. Ashton, S. Lewis, & C. Stringer (Eds.), The ancient human occupation of Britain (pp. 53–65). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Wieder, M., & Gvirtzman, G. (1999). Micromorphological indications on the nature of the late Quaternary Paleosols in the southern Coastal Plain of Israel. Catena, 35, 219–237.

    Article  Google Scholar 

  • Wojtczak, D. (2011). Hummal (Central Syria) and its eponymous industry. In Le Tensorer, J.-M., Jagher, R., & Otte, M. (Eds.), The Lower and Middle Paleolithic in the Middle East and neighbouring regions. ERAUL 126 (pp. 289–308). Liège: Université de Liège.

  • Wojtczak, D. (2014a). The Early Middle Palaeolithic blade industry from Hummal (Central Syria). Ph.D. thesis. Basel: Basel University.

  • Wojtczak, D. (2015). Cores on flakes and bladelet production, a question of recycling? The perspective from the Hummalian industry of Hummal, Central Syria. Quaternary International, 361, 155–177.

    Article  Google Scholar 

  • Yeshurun, R., Bar-Oz, G., & Weinstein-Evron, M. (2007). Modern hunting behavior in the early Middle Paleolithic: Faunal remains from Misliya Cave, Mount Carmel, Israel. Journal of Human Evolution, 53, 656–677.

    Article  Google Scholar 

  • Yeshurun, R., Zaidner, Y., Eisenmann, V., Martinez-Navarro, B., & Bar-Oz, G. (2011). Lower Paleolithic hominin ecology at the fringe of the desert: Faunal remains from Bizat Ruhama and Nahal Hesi, Northern Negev, Israel. Journal of Human Evolution, 60, 492–507.

    Article  Google Scholar 

  • Yizraeli, T. (1963). Holon. Israel Exploration Journal, 13, 137.

    Google Scholar 

  • Yizraeli, T. (1967). A Lower Paleolithic site at Holon. Israel Exploration Journal, 17, 144–152.

    Google Scholar 

  • Zaidner, Y. (2013). Adaptive flexibility of Oldowan hominins: Secondary use of flakes at Bizat Ruhama, Israel. PLoS One. doi:10.1371/journal.pone.0066851.

    Google Scholar 

  • Zaidner, Y. (2014). Lithic production strategies at the Early Pleistocene site of Bizat Ruhama, Israel. BAR International Series 2685. Oxford: Archaeopress.

  • Zaidner, Y., Druck, D., & Weinstein-Evron, M. (2006). Acheulo-Yabrudian handaxes from Misliya Cave, Mount Carmel, Israel. In N. Goren-Inbar & G. Sharon (Eds.), Axe age: Acheulian tool-making from quarry to discard (pp. 243–266). London: Equinox.

    Google Scholar 

  • Zaidner, Y., & Weinstein-Evron, M. (2012). Making a point: The early Middle Palaeolithic toola ssemblage of Misliya Cave. Mount Carmel, Israel. Before Farming. doi:10.3828/bfarm.2012.4.1.

  • Zaidner, Y., Yeshurun, R., & Mallol, C. (2010). Early Pleistocene hominins outside of Africa: Recent excavations at Bizat Ruhama. PaleoAnthropology. doi:10.4207/PA.2010.ART38.

    Google Scholar 

  • Zeuner, F. E. (1945). The Pleistocene period: Its climate, chronology and faunal successions. London: Ray Society.

    Google Scholar 

Download references

Acknowledgments

This paper is based on my doctoral research at the Institute of Archaeology, The Hebrew University of Jerusalem. I thank my advisor, Professor Erella Hovers, for her guidance, help, time, efforts and for her insights and comments on earlier versions of this paper. I thank Dr. Ofer Marder who allowed me to study the lithic materials from Revadim. I also thank Dr. Omry Barzilai who invited me to work with him on the Kefar Menahem West excavation. Professor Ofer Bar-Yosef provided access to the lithic materials from his excavation together with Gisis, I. in Zuttiyeh cave. I wish to thank Mrs. Alegre Savariego, Curator of the Rockefeller Collections and Mosaics, and Natalia Gubenko, Curator of Prehistoric Periods National Treasures Department, Israel Antiquities Authority for their help during this research. Figure 1 was produced by Mika Ullman and Michal Birkenfeld; Leonid Zeiger drew Fig. 2: 1–3, Fig. 3: 1, Fig. 4: 4. The 3-D image illustrations were produced by the Computerized Archaeology Laboratory at the Institute of Archaeology, The Hebrew University, using methods described in Grosman et al. (2008). I wish to thank L. Grosman, O. Harush and A. Ovadia from the Computerized Archaeology Laboratory, Institute of Archaeology, The Hebrew University. Figure 8 was drawn by Mika Ulman. Alex Bogdanovsky and Itay Abadi helped preparing Figs. 9, 10, 11, 12, 13, 14, 15. I wish to thanks the following people for their advice, generous support and friendship over the years: Abadi, I., Agha, N., Alperson, N., Ashkenazi, H., Barzilai, O., Belfer-Cohen, A., Birkendeld, M., Brailovsky, L., Ekshtain, R., Goder-Goldberger, M., Goldsmith, Y., Goren-Inbar, N., Goring-Morris, N., Grosman, L., Herzlinger, G., Khalaily K., Krakovsky, M., Marder, O., Milevski, Y., Mitki, N., Schattner, U. Sharon, G., Sumner, A., Ulman, M., Wojtczak, D., Yeshrun, R., and Zaidner, Y. The final stage of the manuscript was written during my Fulbright postdoctoral fellowship in the University of Connecticut. I want to thank Adler, D., Smith, A., Hartman, G., and Munro, N. for hosting me in the department and making me feel at home. I wish to thank Christian Tryon and the two anonymous reviewers of my PhD for their comments. Finally, I wish to thank the two anonymous reviewers of the paper and the editor of Journal of World Prehistory for their helpful comments that improved the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Malinsky-Buller.

Appendix: Sites and Samples Chosen for the Current Study

Appendix: Sites and Samples Chosen for the Current Study

Kefar Menahem West

History of Research

Beginning in the 1950s, the area around the Kibbutz Kefar Menahem was surveyed over 30 years by Moshe Israel. A salvage excavation was carried out at this locality in 2005 (Barzilai et al. 2006). In 2011 and 2012 probe trenches were dug in order to radiometrically date the site (Malinsky-Buller et al., in preparation).

Excavated Area

The excavation included three areas. The main area, Area A (27.5 m2) and two smaller ones, Areas B and C (3 m2 and 5 m2) (Barzilai et al. 2006).

Stratigraphy

The archeological horizon is embedded above the unconformity between Hamra and quartzitic brown soil (Barzilai et al. 2006; Malinsky-Buller et al., in preparation).

Environment and Fauna

A few faunal remains were retrieved from Area A. These include tooth fragments and broken long-bones consistent in size with the cervids (pers. comm. R. Rabinovich). Paleoenvironmental reconstruction based on isotopic composition suggests that, during the last 780 ka, Mediterranean vegetation (C3 signals) dominated the landscape (Malinsky-Buller et al., in preparation).

Date

The chronological range for the site is 780 to 460 ka, based on the TT-OSL dating of the sediments and paleomagnetic analysis (Malinsky-Buller et al., in preparation).

The Lithic Assemblage and the Sample Studied

The assemblage analyzed includes all material retrieved from the excavation—793 artifacts larger than 2 cm (Barzilai et al. 2006; Table 2).

Revadim

History of Research

The site was discovered during quarrying activity in 1996, followed by salvage excavation (Marder et al. 1998) and another two seasons of excavations (1998–1999) directed by I. Saragusti, and O. Marder. Another salvage excavation occurred in 2004 (Marder et al. 2006, 2011).

Excavated Area

The 1996 excavation exposed an area of 22 m2 (Marder et al. 1998). The excavations held in 1998 and 1999 directed by I. Saragusti, and O. Marder uncovered an area of 27 m2. The 2004 salvage excavation exposed an area of more than 250 m2, including 80 m2 excavated in trenches (Marder et al. 2006, 2011).

Geological Stratigraphy

The Revadim sequence as defined by Gvirtzman and Wieder revealed 21 m of alternating paleosols comprising seven units (Gvirtzman et al. 1999; Marder et al. 1998; Wieder and Gvirtzman 1999). Some refinements were later established, and six units were described (Marder et al. 2006). The relevant layers for the current study are Unit 3: Red Paleosol, Hamra and Husmas (c. 2 m). An unconformity horizon above this unit occurred. Unit 2: quartzitic Gray-Brown Paleosol (c. 2–2.5 m) Gvirtzman et al. (1999) describe this unit as a loamy sand to sandy loam paleosol, with abundant carbonate nodules.

The Archeological Stratigraphy

The site contains two main areas, Area B and Area C located 70 m apart. The earliest occupation at the site occurred upon the unconformity horizon in both areas (Layers C5 and B2, Solodenko 2010). In Area B there is another layer (Layer B1), on top of Layer B2, while in Area C there are another three layers (Layers C3, C2 and C1). At Area C East correlated statigraphically with Layer C3, a taphonomical study enabled the separation of the layer into three primary deposition sub-layers (II–IV) (Malinsky Buller et al. 2011a, b).

Environment and Fauna

Straight-tusked elephant (Palaeoloxodon antiquus), bovids (Bos primigenius, Gazella gazella), cervids (Dama mesopotamica, Cervus elaphus, Capreolus cf. capreolus), wild boar (Sus scrofa), equids, and carnivores (Felis silvestris) (Marder et al. 1998, 2011; Rabinovich et al. 2012). Paleoenvironmental reconstruction based on isotopic compositions suggests that during the archeological accumulation Mediterranean vegetation (C3 signals) dominated the landscape (Marder et al. 2011, figure 4).

Date

The paleomagnetic analysis of the entire section of the site gave a normal polarity signal (Gvirtzman et al. 1999). U-series on coating of carbonate crusts upon flint artifacts yielded dates between 300 ka and 500 ka and possibly older, setting the minimal age estimate for human occupation of the site.

The Lithic Assemblage and the Sample Studied

The studied sample for this analysis included the entire assemblages from Layer C3, C East excavated in 2004 (Malinsky-Buller et al. 2011b). For layer C2 a sample was taken from the Saragusti and Marder excavations (1998 and 1999), covering 5 m2. The squares chosen were those that were excavated to the fullest thickness of the layer, c. 20 cm.

Holon

History of Research

Three seasons of salvage excavations—in 1963, 1964, and 1970—were conducted at the site by Noy (Noy and Issar 1971; Yizraeli 1963, 1967).

Excavated Area

The estimated area of excavation varies among the different publications (e.g., Chazan 2007a: Figures 1.2, 1.7, 1.8; Noy and Issar 1971; Porat et al. 1999; Yizraeli 1967); Chazan (2007a) suggests an area of c. 264 m2, which will be used in this paper.

Geological Stratigraphy

According to Yizraeli (1967) the geological section comprises five geological strata from bottom to the top—Stratum E: kurkar (calcareous aeolianite), of which only the upper part was exposed; Stratum D: Hamra, c. 0.5 m thick; Stratum C: light gray clay of uneven thickness (1.7 m to 30 cm), within which the archeological layer was embedded; Stratum B: dark clay reaching a maximum thickness of 0.5 m; and, Stratum A: an upper Hamra layer, up to 2 m thick. The light gray clay comprising Stratum C was further divided into three sub-layers. The upper part is characterized by an abundance of carbonate nodules. The archaeological horizon lies in the middle part, in which fewer carbonate nodules are found. The lower part is sandier, with a minute amount of faunal remains. The uneven thickness of Stratum C reflects previous topographical changes of a stabilized dune.

The Archeological Stratigraphy

The lithic and faunal remains within the archeological layer are dispersed vertically over c. 60 cm (Yizraeli 1967). Later probe trenches by Porat et al. 1999 or a more extensive probe trench program by O. Marder and H. Khalaily (Malinsky-Buller 2014, figure 2) did not reveal any archeological remains.

Environment and Fauna

Straight-tusked elephants, Bovids (hippos, aurochs, mountain gazelle, wild cattle, wild boars), Cervids (fallow deer, red deer) (Davis and Lister 2007; Horwitz and Monchot 2007; Lister 2007; Monchot and Horwitz 2007).

Date

Porat et al. (1999, 2002) and Porat (2007) dated the yellow-brown clayey sand taken from their probe trenches to c. 200 ka. This layer was geologically correlated with the archaeological layer found by Noy. ESR samples of animal teeth that originated from the old excavations gave similar dates to that obtained by luminescence methods (Porat et al. 1999, 2002; Porat 2007). The Holon dates were questioned by Marder (2009), Gopher et al. (2010) and Bar-Yosef and Belmaker (2011), based on archeological reasoning. The ESR dates were questioned due to the lack of dosimetry measurement at the site (Mercier et al. 2000; Rink et al. 2004a, b). The latest probe trenches program demonstrated the intricate geological stratigraphy of the site, casting doubt on the geological correlations between the probe trenches and their suggested ages and the archeological layer excavated by Noy (Malinsky-Buller 2014, figure 2).

The Lithic Assemblage and the Sample Studied

The assemblage was first studied by the original excavator (Yizraeli 1967). Later Chazan (2000a, b, 2007b, c) published the material. In the current study, the entire collection was studied. Since sieving was not performed during the excavations at the site there is a bias toward larger pieces.

Zuttiyeh Cave

History of Research

The cave was excavated in 1925 by Turville-Petre (1927). Another small excavation occurred in 1973 (Gisis and Bar-Yosef 1974).

Excavated Area

A volume of 550 m3 was excavated by Turville-Petre (1927). The 1973 excavation conducted three soundings in the brecciated remnants within the cave (Gisis and Bar-Yosef 1974).

Geological Stratigraphy

The uppermost layer (0–1.2 m) includes recent material including goat dung, fragments of bone and potsherds of Roman to Byzantine periods. The second layer (1.2–2.0 m) contains large boulders that have fallen from the cave roof and walls. These boulders covered a layer of reddish sediment with fossil bones and numerous Paleolithic flint artifacts. The third layer (2.1–5.1) consists of yellowish sand with pebbles, some boulders and few artifacts. The fourth layer contains fine clays deposited upon the bedrock (Turville-Petre 1927; Bate 1927a, b). The excavation of Gisis and Bar-Yosef (1974) revealed a complex stratigraphy with the brecciated material.

The Archeological Stratigraphy

Turville-Petre (1927) defined the material as Mousterian. Garrod and Bate (1937) recognized that the Zuttiyeh assemblages constituted both Acheulo-Yabrudian and Levallois–Mousterian components. This recognition was later confirmed by the Gisis and Bar-Yosef excavation (1974).

Environment and Fauna

Bate (1927a, b) identified two separate assemblages differentiated by state of preservation, hardness and patina. The first seemed to belong to the Mousterian layers and the second to the lower layers (later determined as Acheuleo-Yabrudian). The assemblage contained bovids (Bison or Bos primigenius, Gazella gazella), cervids (Dama mesopotamica), wild boar (Sus scrofa), equids, and carnivores (Felis silvestris).

Human Remains

Part of a human skull, of unidentified species (from the base of the Acheuleo-Yabrudian layers).

Date

Schwartz et al. (1980), using uranium dating, date the lower layers to 148,000 BP, and the upper ones to about 95,000 BP; however, at least the first is unacceptable today as being too late to be Acheulo-Yabrudian. Valladas et al. (1998) analyzed by TL methods five datable flints taken from the Gisis and Bar-Yosef excavation. Three had a mean age of 106 ± 7 ka and two had a mean age of 157 ± 13. Flints from the underlying Acheulo-Yabrudian level were not datable by TL. Recently, U-series taken from the breccia gave a date range of 260–230 ka (Hovers et al., in press).

The Lithic Assemblage and the Sample Studied

The analysis of the lithic material from Zuttiyeh cave included two campaigns. A partial collection from the original excavations by Turville-Petre (1927) stored in the Rockefeller Muesum, Jerusalem (table X). In addition, I studied the assemblage derived from the excavation made by Gisis and Bar-Yosef (1974). The Turville-Petre collection is biased, as can be demonstrated by the relatively low number of artifacts kept from the original 550 m3, as well as the high frequency of retouched items, while the debitage were not kept. A comparison to the Gisis and Bar-Yosef collection highlights the biased nature of the Turville-Petre collection (Table 19). However, some observations can be made with regard to the periods represented in the Turville-Petre collection. In the Rockefeller collection, there are clear indications of Acheulo-Yabrdudian artifacts, as well as Middle Paleolithic Levalloisian artifacts. The retouched laminar artifacts contain elongated Mousterian points (Abu Sif points), a guiding fossil of the Early Middle Paleolithic period (Zaidner and Weinstein Evron 2012). The Levallois blades have mostly bipolar scar pattern with faceted platforms. The Levallois blades are wider in comparison to the blades with mostly unipolar scar pattern. Both non-Levallois and Levallois blades have a low percentage of cortex. Moreover, there are very few natural backed knives, which are an essential part of the Amudian blade flaking method (Garrod 1970; Copeland 2000; Shimelmitz et al. 2011, 2015). The recent dating program strengthens the indication for an Early Middle Paleolithic age for some of the Middle Paleolithic artifacts. Yet, within the Gisis and Bar-Yosef assemblages there are no indications for laminar production, either Amudian or EMP. Those artifacts attributed to the Middle Paleolithic from the Gisis and Bar-Yosef excavation do not contain guiding fossils that can refine our chronological attribution within the MP.

Table 19 General breakdown of Zuttiyeh material according to excavation year

The sample studied for detailed typo-technological study includes 40 complete handaxes and 16 broken ones (51 from Turville-Petre’s collection and 5 from Gisis and Bar-Yosef’s). The scraper assemblage includes only 79 complete scrapers (66 from Turville-Petre’s collection and 13 from Gisis and Bar-Yosef’s).

Tabun Cave

History of Research

The first excavation at the cave by Garrod took place between the 1929 and 1931–1934 (Garrod and Bate 1937). In 1967–1971 Jelinek re-excavated the cave, sampling the section of the main stratigraphic profile (Jelinek et al. 1973; Jelinek 1975, 1982a, b, 1990). From 1975 to 2003 Ronen excavated the site (Gisis 2008; Gisis and Ronen 2006).

Excavated Area

Garrod excavated in all three chambers and removed thousands of cubic meters, almost emptying the intermediate chamber. Garrod exposed a 24 m thick sequence of deposits at the site (Garrod and Bate 1937). The second expedition, directed by A. J. Jelinek, took place in 1967–1971. Jelinek’s excavation focused on Garrod’s main section, located under the entrance of the inner chamber. Jelinek’s excavations were 10 m above the original section and 6 m wide, penetrating roughly 2 m into the intact profile. Ronen excavated the intermediate chamber as well as Garrod’s témoin in the northwest sector of the cave, and in addition a limited volume in the eastern part of Garrod’s main section (Gisis and Ronen 2006).

The Geological and Archeological Stratigraphy

Garrod divided the sequence into 6 archeological layers. Those are, from bottom up, Layer G—Tayacian (at the bottom); Layer F—Late Acheulean; Layer E—Acheulo-Micoqian, divided into 4 sub-layers; Layers D and C—Lower Levallois–Mousterian; Layer B, Upper Mousterian. Garrod later termed the Acheulo-Yabrudian (Garrod 1956, 1970). Jelinek’s excavation occurred at the interface of Garrod’s Layers C and B, with its lower part approximately at the base of Garrod’s Layer E (Jelinek et al. 1973). Jelinek recorded in his excavations a series of 14 major stratigraphical units with 86 layers (Beds 1–85 and 90), many of them with additional internal divisions (Jelinek 1982b, 1990). Unit I is chiefly correlated to Garrod’s Tabun C. Units II–VIII suffered to various extents from post-depositional processes leading to a mixture of finds in some of the layers within these units (Jelinek 1982b). Unit IX correlates to Garrod’s Layer D and is part of the earliest Middle Paleolithic occurrences at the cave excavated by Jelinek.

Environment and Fauna

Date

At Tabun cave several radiometric methods have been used in the past 30 years, mainly for Layer E and to a lesser extent for Layers C and D (Grun et al. 1991; McDermott et al. 1993; Mercier et al. 1995; Mercier et al. 2000; Mercier and Valladas 2003; Rink et al. 2004a; see summary of methods in Schwarcz and Rink 2001, figure 3). Initially there was incompatibility between the dates obtained by ESR and those obtained by TL. Unit IX was dated by TL to 263 ± 27 ka (Mercier et al. 1995; Mercier and Valladas 2003).

The Lithic Assemblage and the Sample Studied

The lithic assemblage of Unit IX from Jelinek excavation was studied. This unit is correlated with the earliest part of Garrod’s Layer D. The lithic assemblage of Unit IX (Beds 62–69) includes a total of 1651 lithic artefacts larger than 2 cm. (Jelinek 1982b, p. 75). Those are found in 17 m2, within a thick stratigraphical sequence of 1–1.5 m. The layer is unique in the low density of finds, as well as in burnt artifact percentages in comparison to earlier and later layers (Clark 2014; Shimelmitz et al. 2014a).

The lithic assemblage of Layer D was described by Garrod as containing a high frequency of Levalloisian products, which did not emphasize the blade component (Garrod and Bate 1937). Jelinek et al. (1973) described a sudden cultural change not related to the sedimentological sequence. He observed that the artifact density is low and artifacts are scattered evenly with a lack of preserved hearths. The absence of hearths was interpreted as signifying intermittent brief occupations of the cave during the deposition of Layer D. The high frequency of blades was described as an important characteristic of the lithic assemblages. The Unit IX assemblage was studied by many scholars from various scholarly traditions with different research aims. The first studies were by Jelinek and his students (Jelinek et al. 1973; Jelinek 1975, 1982a, b, 1990; Dibble 1981). Later research on samples of the original assemblages were conducted by Meignen (1994), Monigal (2002), Ashkenazi (2005) and lastly by Shimelmitz and Kuhn (2013). In this paper, I describe my re-examinations of the lithic assemblage of Unit IX (Table 14) comparing the current results with previous studies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malinsky-Buller, A. The Muddle in the Middle Pleistocene: The Lower–Middle Paleolithic Transition from the Levantine Perspective. J World Prehist 29, 1–78 (2016). https://doi.org/10.1007/s10963-016-9092-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10963-016-9092-1

Keywords

  • Lower Paleolithic
  • Middle Paleolithic
  • Levant
  • Lithic technology
  • Biface
  • Levallois
  • Innovation processes