Skip to main content

Advertisement

Log in

A tale of two technological capabilities: economic growth revisited from a technological capability transition perspective

  • Published:
The Journal of Technology Transfer Aims and scope Submit manuscript

Abstract

This study revisits economic growth from the perspective of technological capability types and the transition related to growth slowdowns in middle-income countries. The objectives of this study are twofold. First, we reveal the development pattern of national technological capabilities in the global market by means of two capability indices. Second, we investigate the heterogeneous contribution of these indices to economic growth by income level. To this end, we first propose an analytical framework that evaluates two types of technological capabilities, that is, implementation capability and design capability, developed by different knowledge types and learning modes. Using the calculated indices with a sample of 42 countries from 1996 to 2016, we conduct econometric analysis via Granger causality testing between the two capability indices, a dynamic panel regression of the global connections on the capability development, and a panel quantile regression on income per capita. Our results show that: (1) the sequential pattern of national technological capability development from the implementation-based to the design-based; (2) a positive influence of higher global connections on the capability development; and (3) an increasing contribution of design capability towards economic growth but a decreasing contribution of implementation capability when approaching the higher quantiles of the income level. Finally, our study’s implications concern the process of sustained economic growth and the fundamental cause of the middle-income trap—specifically, the need for capability transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. For reference, we summarized the well-known indices of national technological capability and innovation performances in Table 9, based on data from international organizations and collective agencies.

  2. Here, “building” is explained in a similar context to the “knowledge building” literature (Scardamalia and Bereiter 2010).

  3. We performed the Levin–Lin–Chu (LLC) test for the null hypothesis of a unit-root (or non-stationarity) in each index (Levin et al. 2002), and the result is shown in Table 12. In the case of the variable IC, the bias-adjusted test statistics is − 2.51 (or − 2.13 when removing the cross-sectional mean), rejecting the null hypothesis at the 5% significance level. Similarly, the test statistics from the case of DC is − 2.11 (or − 3.86 when removing the cross-sectional mean), rejecting the null hypothesis at the 5% significance level. This result, therefore, implies that Granger causality between IC and DC could only be interpreted as a short-run causality under Eq. 3. For reference, it should be noted that the null hypothesis for both IC and DC could not be rejected at the 1% or lower significance levels. In this case, one might consider an alternative approach to the Granger causality test between non-stationary (or non-stationary but cointegrated) variables.

  4. In detail, we set GMM type instruments of log_GDPpci,t and standard instruments of ICi,t and DCi,t for the differenced equation. As a result of the Arellano-Bond test for no autocorrelation hypothesis in first-differenced errors, we confirmed that our model is free from misspecification.

References

  • Abramovitz, M. (1986). Catching up, forging ahead, and falling behind. The Journal of Economic History, 46(2), 385–406.

    Article  Google Scholar 

  • Agénor, P. R. (2017). Caught in the middle? The economics of middle-income traps. Journal of Economic Surveys, 31(3), 771–791.

    Article  Google Scholar 

  • Agénor, P.-R., Canuto, O., & Jelenic, M. (2012). Avoiding middle-income growth traps. World Bank-Economic Premise, 98, 1–7.

    Google Scholar 

  • Altenburg, T., Schmitz, H., & Stamm, A. (2008). Breakthrough? China’s and india’s transition from production to innovation. World Development, 36(2), 325–344.

    Article  Google Scholar 

  • Amsden, A. H. (2001). The rise of “the rest”: Challenges to the west from late-industrializing economies. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Archibugi, D., & Coco, A. (2004). A new indicator of technological capabilities for developed and developing countries (arco). World Development, 32(4), 629–654.

    Article  Google Scholar 

  • Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297.

    Article  Google Scholar 

  • Baumol, W. J. (1986). Productivity growth, convergence, and welfare: What the long-run data show. The American Economic Review, 76, 1072–1085.

    Google Scholar 

  • Bell, M. (1984). ‘Learning’and the accumulation of industrial technological capacity in developing countries. In M. Fransman, & K. King (Eds.), Technological capability in the third world (pp. 187–209). Springer.

  • Bell, M., & Figueiredo, P. N. (2012). Innovation capability building and learning mechanisms in latecomer firms: Recent empirical contributions and implications for research. Canadian Journal of Development Studies/Revue canadienne d’études du développement, 33(1), 14–40.

    Article  Google Scholar 

  • Bell, M., & Pavitt, K. (1992). Accumulating technological capability in developing countries. The World Bank Economic Review, 6, 257–281.

    Article  Google Scholar 

  • Bhaduri, S., & Ray, A. S. (2004). Exporting through technological capability: Econometric evidence from India’s pharmaceutical and electrical/electronics firms au—bhaduri, saradindu. Oxford Development Studies, 32(1), 87–100.

    Article  Google Scholar 

  • Bhattacharya, M., Paramati, S. R., Ozturk, I., & Bhattacharya, S. (2016). The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 162, 733–741.

    Article  Google Scholar 

  • Blalock, G., & Gertler, P. J. (2004). Learning from exporting revisited in a less developed setting. Journal of Development Economics, 75(2), 397–416.

    Article  Google Scholar 

  • Bulman, D., Eden, M., & Nguyen, H. (2017). Transitioning from low-income growth to high-income growth: Is there a middle-income trap? Journal of the Asia Pacific Economy, 22(1), 5–28.

    Article  Google Scholar 

  • Calderón, C., & Liu, L. (2003). The direction of causality between financial development and economic growth. Journal of Development Economics, 72(1), 321–334.

    Article  Google Scholar 

  • Canay, I. A. (2011). A simple approach to quantile regression for panel data. The Econometrics Journal, 14(3), 368–386.

    Article  Google Scholar 

  • Cantore, N., Clara, M., Lavopa, A., & Soare, C. (2017). Manufacturing as an engine of growth: Which is the best fuel?. Structural Change and Economic Dynamics, 42, 56–66.

    Article  Google Scholar 

  • Castellacci, F. (2004). A neo-schumpeterian approach to why growth rates differ. Revue économique, 55(6), 1145–1169.

    Article  Google Scholar 

  • Castellacci, F. (2011). Closing the technology gap? Review of Development Economics, 15(1), 180–197.

    Article  Google Scholar 

  • Choi, K.-S., Lee, J.-D., & Baek, C. (2016). Growth of de alio and de novo firms in the new and renewable energy industry. Industry and Innovation, 23(4), 295–312.

    Article  Google Scholar 

  • Coad, A., Segarra, A., & Teruel, M. (2016). Innovation and firm growth: Does firm age play a role? Research Policy, 45(2), 387–400.

    Article  Google Scholar 

  • Coe, D. T., & Helpman, E. (1995). International R&D spillovers. European Economic Review, 39(5), 859–887.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Innovation, 35, 128–152.

    Google Scholar 

  • Costantini, V., & Martini, C. (2010). The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data. Energy Economics, 32(3), 591–603.

    Article  Google Scholar 

  • Cowan, W. N., Chang, T., Inglesi-Lotz, R., & Gupta, R. (2014). The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Policy, 66, 359–368.

    Article  Google Scholar 

  • Desai, M., Fukuda-Parr, S., Johansson, C., & Sagasti, F. (2002). Measuring the technology achievement of nations and the capacity to participate in the network age. Journal of Human Development, 3(1), 95–122.

    Article  Google Scholar 

  • Dufrenot, G., Mignon, V., & Tsangarides, C. (2010). The trade-growth nexus in the developing countries: A quantile regression approach. Review of World Economics, 146(4), 731–761.

    Article  Google Scholar 

  • Dumitrescu, E.-I., & Hurlin, C. (2012). Testing for granger non-causality in heterogeneous panels. Economic Modelling, 29(4), 1450–1460.

    Article  Google Scholar 

  • Dutta, S., Lanvin, B., & Wunsch-Vincent, S. (2016). The global innovation index 2016: Winning with global innovation. Ithaca: Johnson Cornell University.

    Google Scholar 

  • Eaton, J., & Kortum, S. (1996). Trade in ideas patenting and productivity in the OECD. Journal of International Economics, 40(3), 251–278.

    Article  Google Scholar 

  • Eichengreen, B., Park, D., & Shin, K. (2013). Growth slowdowns redux: New evidence on the middle-income trap. NBER Working Paper series 18673. National Bureau of Economic Research.

  • Ernst, D., Ganiatsos, T., & Mytelka, L. (2003). Technological capabilities and export success in Asia. London: Routledge.

    Book  Google Scholar 

  • Ernst, D., & Kim, L. (2002). Global production networks, knowledge diffusion, and local capability formation. Research Policy, 31(8), 1417–1429.

    Article  Google Scholar 

  • Fagerberg, J. (1987). A technology gap approach to why growth rates differ. Research Policy, 16(2), 87–99.

    Article  Google Scholar 

  • Fagerberg, J. (1994). Technology and international differences in growth rates. Journal of Economic Literature, 32(3), 1147–1175.

    Google Scholar 

  • Fagerberg, J., & Srholec, M. (2008). National innovation systems, capabilities and economic development. Research Policy, 37(9), 1417–1435.

    Article  Google Scholar 

  • Fagerberg, J., Srholec, M., & Knell, M. (2007). The competitiveness of nations: Why some countries prosper while others fall behind. World Development, 35(10), 1595–1620.

    Article  Google Scholar 

  • Fagerberg, J., & Verspagen, B. (2002). Technology-gaps, innovation–diffusion and transformation: An evolutionary interpretation. Research Policy, 31(8), 1291–1304.

    Article  Google Scholar 

  • Fagerberg, J., & Verspagen, B. (2007). Innovation, growth and economic development: Have the conditions for catch-up changed? International Journal of Technological Learning, Innovation and Development, 1(1), 13–33.

    Article  Google Scholar 

  • Felipe, J., Kumar, U., & Galope, R. (2017). Middle-income transitions: Trap or myth? Journal of the Asia Pacific Economy, 22(3), 429–453.

    Article  Google Scholar 

  • Filippetti, A., & Peyrache, A. (2011). The patterns of technological capabilities of countries: A dual approach using composite indicators and data envelopment analysis. World Development, 39(7), 1108–1121.

    Article  Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18, 382–388.

    Article  Google Scholar 

  • Foster, N. (2008). The impact of trade liberalisation on economic growth: Evidence from a quantile regression analysis. Kyklos, 61(4), 543–567.

    Article  Google Scholar 

  • Freudenberg, M. (2003). Composite indicators of country performance: A critical assessment. OECD Science, Technology and Industry Working Papers, 2003/16. Paris: OECD Publishing.

  • Furman, J. L., Porter, M. E., & Stern, S. (2002). The determinants of national innovative capacity. Research Policy, 31(6), 899–933.

    Article  Google Scholar 

  • Galvao, A. F., & Kato, K. (2016). Smoothed quantile regression for panel data. Journal of Econometrics, 193(1), 92–112.

    Article  Google Scholar 

  • Gill, I., & Kharas, H. (2007). An east asian renaissance: Ideas for economic growth. Washington, DC: World Bank Publications.

    Book  Google Scholar 

  • Grossman, G. M., & Helpman, E. (1991). Innovation and growth in the global economy. Cambridge: MIT Press.

    Google Scholar 

  • Harrison, A. (1996). Openness and growth: A time-series, cross-country analysis for developing countries. Journal of Development Economics, 48(2), 419–447.

    Article  Google Scholar 

  • Kang, B., Nabeshima, K., & Cheng, F.-T. (2015). Avoiding the middle income trap: Indigenous innovative effort vs foreign innovative effort. IDE Discussion Paper. 509. Institute of Developing Economies, Japan External Trade Organization (JETRO).

  • Kato, K., Galvao, A. F., Jr., & Montes-Rojas, G. V. (2012). Asymptotics for panel quantile regression models with individual effects. Journal of Econometrics, 170(1), 76–91.

    Article  Google Scholar 

  • Kharas, H., & Kohli, H. (2011). What is the middle income trap, why do countries fall into it, and how can it be avoided? Global Journal of Emerging Market Economies, 3(3), 281–289.

    Article  Google Scholar 

  • Kim, L. (1997). Imitation to innovation; The dynamics of Korea’s technological learning. Boston: Harvard Business School Press.

    Google Scholar 

  • Kim, L. (1999). Building technological capability for industrialization: Analytical frameworks and Korea’s experience. Industrial and Corporate Change, 8(1), 111–136.

    Article  Google Scholar 

  • Kim, L., & Nelson, R. R. (2000). Technology, learning, and innovation: Experiences of newly industrializing economies. Cambridge: Cambridge University Press.

    Google Scholar 

  • Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1), 74–89.

    Article  Google Scholar 

  • Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 46, 33–50.

    Article  Google Scholar 

  • Koenker, R., Chernozhukov, V., He, X., & Peng, L. (2017). Handbook of quantile regression. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Krugman, P. (1985). A ‘technology gap’ model of international trade. In K. Jungenfelt, & D. Hague (Eds.), Structural adjustment in developed open economies (pp. 35–61). Springer.

  • Lall, S. (2000). Technological change and industrialization in the asian newly industrializing economies achievements and challenges. In L. Kim & R. R. Nelson (Eds.), Technology, learning, and innovation: Experiences of newly industrializing economies (pp. 13–68). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lee, J.-D., & Baek, C. (2012). The industrial and technology policies of korea from the perspective of design principles. Asian Journal of Technology Innovation, 20(1), 97–112.

    Article  Google Scholar 

  • Lee, J.-D., Baek, C., Maliphol, S., & Yeon, J.-I. (2019). Middle innovation trap. Foresight and STI Governance, 13, 6–18.

    Article  Google Scholar 

  • Lee, K., & Kim, B.-Y. (2009). Both institutions and policies matter but differently for different income groups of countries: Determinants of long-run economic growth revisited. World Development, 37(3), 533–549.

    Article  Google Scholar 

  • Lee, K., Szapiro, M., & Mao, Z. (2018). From global value chains (gvc) to innovation systems for local value chains and knowledge creation. The European Journal of Development Research, 30(3), 424–441.

    Article  Google Scholar 

  • Levin, A., Lin, C.-F., & James Chu, C.-S. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1), 1–24.

    Article  Google Scholar 

  • Liu, X., Schwaag Serger, S., Tagscherer, U., & Chang, A. Y. (2017). Beyond catch-up—Can a new innovation policy help china overcome the middle income trap? Science and Public Policy, 44(5), 656–669.

    Article  Google Scholar 

  • Lundvall, B.-Ä., & Johnson, B. (1994). The learning economy. Journal of industry studies, 1(2), 23–42.

    Article  Google Scholar 

  • Morrison, A., Pietrobelli, C., & Rabellotti, R. (2008). Global value chains and technological capabilities: A framework to study learning and innovation in developing countries. Oxford Development Studies, 36(1), 39–58.

    Article  Google Scholar 

  • Nair-Reichert, U., & Weinhold, D. (2001). Causality tests for cross-country panels: A new look at fdi and economic growth in developing countries. Oxford Bulletin of Economics and Statistics, 63(2), 153–171.

    Article  Google Scholar 

  • Nasir, A., Ali, T. M., Shahdin, S., & Rahman, T. U. (2011). Technology achievement index 2009: Ranking and comparative study of nations. Scientometrics, 87(1), 41–62.

    Article  Google Scholar 

  • Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Cambridge: Harvard University Press.

    Google Scholar 

  • Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory (McGraw-Hill Series in Psychology). London: McGraw-Hill New York.

    Google Scholar 

  • Pietrobelli, C., & Rabellotti, R. (2011). Global value chains meet innovation systems: Are there learning opportunities for developing countries? World Development, 39(7), 1261–1269.

    Article  Google Scholar 

  • Radosevic, S. (1999). International technology transfer and catch-up in economic development. Cheltham: Edward Elgar Publishing.

    Google Scholar 

  • Radosevic, S., & Yoruk, E. (2016). Why do we need a theory and metrics of technology upgrading? Asian Journal of Technology Innovation, 24(sup1), 8–32.

    Article  Google Scholar 

  • Radosevic, S., & Yoruk, E. (2018). Technology upgrading of middle income economies: A new approach and results. Technological Forecasting and Social Change, 129, 56–75.

    Article  Google Scholar 

  • Ravenhill, J. (2014). Global value chains and development. Review of International Political Economy, 21(1), 264–274.

    Article  Google Scholar 

  • Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21(2), 173–184.

    Article  Google Scholar 

  • Sala-i-Martin, X. X. (1996). Regional cohesion: Evidence and theories of regional growth and convergence. European Economic Review, 40(6), 1325–1352.

    Article  Google Scholar 

  • Sala-i-Martin, X., Crotti, R., Di Battista, A., Hanouz, M. D., Galvan, C., Geiger, T., et al. (2015). Reaching beyond the new normal: Findings from the global competitiveness index 2015–2016. The Global Competitiveness Report, 2016(2015), 3–41.

    Google Scholar 

  • Salomon, R. M., & Shaver, J. M. (2005). Learning by exporting: New insights from examining firm innovation. Journal of Economics & Management Strategy, 14(2), 431–460.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2010). A brief history of knowledge building. Canadian Journal of Learning and Technology, 36(1), 1–16.

    Article  Google Scholar 

  • Schneider, P. H. (2005). International trade, economic growth and intellectual property rights: A panel data study of developed and developing countries. Journal of Development Economics, 78(2), 529–547.

    Article  Google Scholar 

  • Souare, M. (2013). Productivity growth, trade and fdi nexus: Evidence from the canadian manufacturing sector. The Journal of Technology Transfer, 38(5), 675–698.

    Article  Google Scholar 

  • Squalli, J., & Wilson, K. (2011). A new measure of trade openness. The World Economy, 34(10), 1745–1770.

    Article  Google Scholar 

  • Stiglitz, J. E. (1996). Some lessons from the east Asian miracle. The world Bank research observer, 11(2), 151–177.

    Article  Google Scholar 

  • Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55.

    Article  Google Scholar 

  • UNIDO. (2017). Competitive industrial performance report 2016. Vienna: UNIDO.

    Google Scholar 

  • Verspagen, B. (1992a). Endogenous innovation in neoclassical growth models: A survey. Journal of Macroeconomics, 14(4), 631–662.

    Article  Google Scholar 

  • Verspagen, B. (1992b). Uneven growth between interdependent economies: An evolutionary view on technology gaps, trade and growth. Maastricht: Maastricht University.

    Google Scholar 

  • Vivarelli, M. (2016). The middle income trap: A way out based on technological and structural change. Economic Change and Restructuring, 49(2), 159–193.

    Article  Google Scholar 

  • Yanikkaya, H. (2003). Trade openness and economic growth: A cross-country empirical investigation. Journal of Development Economics, 72(1), 57–89.

    Article  Google Scholar 

  • Young, A. (1994). Lessons from the east Asian NICS: A contrarian view. European Economic Review, 38(3–4), 964–973.

    Article  Google Scholar 

  • Young, A. T., Higgins, M. J., & Levy, D. (2008). Sigma convergence versus beta convergence: Evidence from us county-level data. Journal of Money, Credit and Banking, 40(5), 1083–1093.

    Article  Google Scholar 

Download references

Acknowledgements

This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017R1A2B4009376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulwoo Baek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 9, 10, 11 and 12.

Table 9 Review of other indices to measure national technological capability and performances in literature
Table 10 Description of the technological capability index and corresponding indicators
Table 11 Summary statistics of the data after the treatments, that is, imputation and normalization
Table 12 Levin–Lin–Chu unit-root test result for IC and DC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeon, JI., Lee, JD. & Baek, C. A tale of two technological capabilities: economic growth revisited from a technological capability transition perspective. J Technol Transf 46, 574–605 (2021). https://doi.org/10.1007/s10961-020-09809-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10961-020-09809-2

Keywords

JEL Classification

Navigation