Analysing the effects of cluster policy: What can we learn from the German leading-edge cluster competition?

Article
  • 16 Downloads

Abstract

Building on experiences collected in the course of an evaluation of a German cluster policy programme, the Leading-Edge Cluster Competition (LECC, evaluation 2008–2014), this paper scrutinizes central problems that arise in the evaluation of the impacts of large-scale innovation policy programmes. We find that our relatively modest knowledge with regard to the actual effects and impact patterns of comparable programmes is not necessarily due to methodological weaknesses of the evaluation studies, but rather to inherent structural programme characteristics. The present state-of-the-art evaluation methodology does not sufficiently allow us to take into consideration these characteristics. Challenges in the evaluation of technology programs relate closely to different facets of complexity. Our analysis shows that three aspects of programme effects deserve more attention in evaluation research: Emergence and non-linearity, uncertainty, and time patterns of the observed effects. Using the example of the LECC, our paper demonstrates how evaluators’ work is affected by these phenomena. The results lead to the question of whether there are methodological alternatives that are suitable for future evaluations of complex innovation programmes.

Keywords

Cluster policy Evaluation Complexity Emergence Uncertainty Time patterns 

JEL

O38 O33 

References

  1. Antonelli, C. (Ed.). (2011). Handbook on the economic complexity of technological change. Cheltenham, Northhampton, MA: Edward Elgar.Google Scholar
  2. Arthur, W. B. (1994). Increasing returns and path dependence in the economy. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
  3. Bauer, R. (2006). Gescheiterte innovationen. Fehlschläge und technologischer Wandel. Campus Forschung 893. Frankfurt/New York: Campus Verlag.Google Scholar
  4. Bennett, A., & Checkel, J. T. (Eds.). (2015). Process tracing. From metaphor to analytic tool. Cambridge: Cambridge University Press.Google Scholar
  5. BMBF—Bundesministerium für Bildung und Forschung. (2007). Deutschlands Spitzencluster. BMBF: Mehr Innovation. Mehr Wachstum. Mehr Beschäftigung. Berlin.Google Scholar
  6. BMBF—Bundesministerium für Bildung und Forschung (2009). Richtlinien zur Förderung für den „Spitzencluster-Wettbewerb“des Bundesministeriums für Bildung und Forschung im Rahmen der Hightech-Strategie für Deutschland (2. Wettbewerbsrunde). Berlin: BMBF. bmbf.de/foerderungen/13305.php.pdf. Accessed 15 May 2015.Google Scholar
  7. Brenner, T., & Schlump, C. (2011). Policy measures and their effects in different phases of the cluster life cycles. Regional Studies, 45(10), 1363–1386.CrossRefGoogle Scholar
  8. Chandler, A. D., Jr. (2015a). Scale and scope. The dynamics of industrial capitalism. Cambridge, MA, London: Third Printing, The Belknap Press of Harvard University Press.Google Scholar
  9. Chandler, A. D., Jr. (2015b). Inventing the electronic century. The epic story of the consumer electronics and computer industries. Cambridge, MA, London: Harvard University Press.Google Scholar
  10. Diez, M. A. (2001). The evaluation of regional innovation and cluster policies: Towards a participatory approach. European Planning Studies, 9(7), 907–923.CrossRefGoogle Scholar
  11. Directorate General External Relations (2006). Evaluation methods for the European union’s external assistance. Vol. 1: Methodological bases for evaluation. Luxemburg: Office for Official Publication of the European Communities. http://ec.europa.eu/europeaid/evaluation/methodology/examples/guided_en.pdf. Accessed 3 Aug 2015.
  12. Dodgson, M., Gann, D., & Salter, A. (2015). Think, play, do. Technology, innovation, and organization. Oxford: Oxford University Press.Google Scholar
  13. Dohse, D., & Staehler, T. (2008). BioRegio, BioProfile and the Rise of the German Biotech Industry. In Kiel Working Papers 1456. Kiel: Kiel Institute for the World Economy.Google Scholar
  14. Duranton, G. (2011). California dreamin: The feeble case for cluster policies. Review of Economic Analysis, 3, 3–45.Google Scholar
  15. Dyson, G. (2014). Turings Kathedrale. Ullstein, Propyläen: Die Ursprünge des digitalen Zeitalters. Berlin.Google Scholar
  16. EC External Services, Evaluation Unit (n.d.). Outcome and Impact Level Intervention Logic & Indicators. Brussels: European Commission. http://ec.europa.eu/europeaid/how/evaluation/methodology/impact_indicators/wp_meth_en.pdf. Accessed 3 Aug 2015.
  17. Edler, J., Cunningham, P., Gök, A., & Shapira, P. (2013). Impacts of innovation policy: Synthesis and conclusions. Compendium of evidence on the effectiveness of innovation policy intervention. NESTA. Manchester Institute of Innovation Research, Manchester Business School, University of Manchester. http://research.mbs.ac.uk/innovation/.pdf. Accessed 10 June 2015.
  18. Edwards, P. N. (2010). A vast machine. computer models, climate data, and the politics of global warming. Cambridge, MA, London: The MIT Press.Google Scholar
  19. European Commission (2004). Evaluating EU Activities. A Practical Guide for the Commission Services, July 2004. DG Budget—Evaluation Unit. Luxembourg: Office for Official Publication of the European Communities. http://ec.europa.eu/agriculture/eval/guide/eval_activities_en.pdf. Accessed 3 Aug 2015.
  20. Feser, E. J. (2008). On building clusters versus leveraging synergies in the design of innovation policy for developing economies. In U. Blien & G. Meyer (Eds.), The economics of regional clusters: Networks, technology and policy (pp. 191–213). Cheltenham, UK: Edward Elgar. Available at http://works.bepress.com/edwardfeser/25.
  21. Fischhoff, B., & Kadvany, J. (2011). Risk: A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Foster, J. (2017). Prior commitment and uncertainty in complex economic systems: Reinstating history in the core of economic analysis. Brisbane, Queensland 4072, Australia: The School of Economics, The University of Queensland, https://papers.ssrn.com/sol3/papers.cfm?abstract_id_2903635. Accessed: 28 Mar 2017.
  23. Gigerenzer. G. (2014). Risiko. Wie man die richtigen Entscheidungen trifft. München: btb Verlag.Google Scholar
  24. Guo, S., & Fraser, M. (2010). Propensity score analysis. Statistical methods and applications. Thousand Oaks, CA: Sage.Google Scholar
  25. Holland, J. H. (2014). Complexity. A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  26. Hospers, G.-J., Sautet, F., & Desrochers, P. (2008). Silicon somewhere: Is there a need for cluster policy? In C. Karlsson (Ed.), Handbook of research on innovation and clusters. Cases and policies. Handbooks of research in clusters series 2 (pp. 430–446). Cheltenham und Northamption, MA: Edward Elgar.Google Scholar
  27. Karlsson, C. (Ed.). (2008). Handbook of research on cluster theory. Handbooks of research in clusters series 1. Cheltenham und Northamption, MA: Edward Elgar.Google Scholar
  28. Kiese, M., & Wrobel, M. (2011). A public choice perspective on regional cluster and network promotion in Germany. European Planning Studies, 10(19), 1691–1712.CrossRefGoogle Scholar
  29. Knight, F. H. (2015). Risk, uncertainty and profit. Miami Florida: HardPress Publishing.Google Scholar
  30. Mainzer, K. (2008). Komplexität. UTB Profile. Paderborn: Wilhelm Fink.Google Scholar
  31. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (2016). Innovation and the evolution of industries: History-friendly models. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Mazzucato, M. (2014). The entrepreneurial State. Debunking public vs. private sector myths (Revised ed.). London, New York, Delhi: Anthem Press.Google Scholar
  33. Menzel, M.-P., & Fornahl, D. (2009). Cluster life cycles—dimensions and rationales of cluster evolution. Industrial and Corporate Change, 19, 205–238.CrossRefGoogle Scholar
  34. METIS GmbH (2010). Impact assessment at the CoR: Methodology and iits implementation. In H. Tödtling-Schönhofer, M. Hahn, A. Kronberger, J. Pucher, H. Oraze, & T. Kinsella (Eds.). Brussels: European Union.Google Scholar
  35. Miller, J. H., & Page, S. E. (2007). Complex adaptive systems. An introduction of computational models of social life. Princeton and Oxford: Princeton University Press.Google Scholar
  36. Mitchell, S. (2008). Komplexitäten. Warum wir erst anfangen, die Welt zu verstehen. Edition Unseld 1. Frankfurt am Main: Suhrkamp.Google Scholar
  37. OECD. (2004). Evaluating local economic and employment development. How to assess what works among programmes and policies. Paris: OECD.CrossRefGoogle Scholar
  38. Patton, M. Q. (2011). Developmental evaluation. Applying complexity concepts to enhance innovation and use. New York and London: The Guilford Press.Google Scholar
  39. Pawson, R. (2013). The science of evaluation. A realist manifesto. London, Thousand OAKS, CA, New Delhi, Singapore: Sage.CrossRefGoogle Scholar
  40. Porter, M. E. (1998). Clusters and the new economics of competition. Harvard Business Review, 76(6), 77–79.Google Scholar
  41. Radkau, J. (2008). Technik in Deutschland. Vom 18. Jahrhundert bis heute. Frankfurt, New York: Campus.Google Scholar
  42. Radkau, J. (2017), Geschichte der Zukunft. Prognosen, Visionen, Irrungen in Deutschland von 1945 bis heute. München: C.H. Beck.Google Scholar
  43. Rothgang, M., Cantner, U., Dehio, J., Engel, D., Fertig, M., Graf, H., Hinzmann. S., Linshalm, E., Ploder, M., Scholz, A.-M., & Töpfer, S. (2014a). Begleitende Evaluierung des Förderinstruments “Spitzencluster-Wettbewerb” des BMBF, Abschlussbericht. [RWI - Rheinisch-Westfälisches Institut für Wirtschaftsforschung, ISG—Institut für Sozialforschung und Gesellschaftspolitik GmbH, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Lehrstuhl für Volkswirtschaftslehre/Mikroökonomik der Friedrich-Schiller-Universität Jena im Auftrag des BMBF]. Essen: RWI.Google Scholar
  44. Rothgang, M., Cantner, U., Dehio, J., Engel, D., Fertig, M., Graf, H., Hinzmann, S., Linshalm, E., Ploder, M., Scholz, A.-M., & Töpfer, S. (2014b). Accompanying Evaluation of the Funding Instrument “Spitzencluster-Wettbewerb” (Leading-Edge Cluster Competition) of the Federal Ministry of Education and Research. Final Report—Summary. RWI Materialien 90. Essen: RWI.Google Scholar
  45. Rothgang, M., & Lageman, B. (2015). Wie sicher ist der Erfolg bei der Förderung von Forschungspartnerschaften? Erfahrungen aus der Evaluierung des Spitzencluster-Wettbewerbs. In K. Koschatzky & T. Stahlecker (Eds.), Neue strategische Forschungspartnerschaften zwischen Wissenschaft und Wirtschaft im deutschen Innovationssystem (pp. 65–99). Stuttgart: Fraunhofer Verlag.Google Scholar
  46. Rudack, T., Perilla, J. & Schulten, K. (2015). Molekulardynamik: Die Geheimnisse des Lebens berechnen. Spektrum der Wissenschaft. Spezial Physik, Mathematik, Technik, 2015(3), 28–37.Google Scholar
  47. Uyarra, E. & Ramlogan, R. (2012). The Effects of Cluster Policy on Innovation. Compendium of Evidence on the Effectiveness of Innovation Policy Intervention. NESTA. Manchester Institute of Innovation Research, Manchester Business School, University of Manchester. http://research.mbs.ac.uk/innovation/. Accessed 10 June 2015.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.RWI Leibniz Institute for Economic ResearchEssenGermany

Personalised recommendations