The Journal of Technology Transfer

, Volume 41, Issue 6, pp 1260–1283 | Cite as

Country level efficiency and national systems of entrepreneurship: a data envelopment analysis approach

Article

Abstract

This paper tests the efficiency hypothesis of the knowledge spillover theory of entrepreneurship. Using a comprehensive database for 63 countries for 2012, we employ data envelopment analysis to directly test how countries capitalize on their available entrepreneurial resources. Results support the efficiency hypothesis of knowledge spillover entrepreneurship. We find that innovation-driven economies make a more efficient use of their resources, and that the accumulation of market potential by existing incumbent businesses explains country-level inefficiency. Regardless of the stage of development, knowledge formation is a response to market opportunities and a healthy national system of entrepreneurship is associated with knowledge spillovers that are a prerequisite for higher levels of efficiency. Public policies promoting economic growth should consider national systems of entrepreneurship as a critical priority, so that entrepreneurs can effectively allocate resources in the economy.

Keywords

Knowledge spillover theory GEDI GEM Efficiency Data envelopment analysis Clusters 

JEL Classification

C4 O10 L26 M13 

References

  1. Abdih, Y., & Joutz, F. (2006). Relating the knowledge production function to total factor productivity: An endogenous growth puzzle. IMF Staff Papers, 53(2), 242–271.Google Scholar
  2. Acs, Z. J., Autio, E., & Szerb, L. (2014). National systems of entrepreneurship: Measurement issues and policy implications. Research Policy, 43, 476–494.CrossRefGoogle Scholar
  3. Acs, Z. J., Braunerhjelm, P., Audretsch, D. B., & Carlsson, B. (2009). A knowledge spillover theory of entrepreneurship. Small Business Economics, 32, 15–30.CrossRefGoogle Scholar
  4. Aghion, P., & Howitt, P. A. (1992). Model of growth through creative destruction. Econometrica, 60(2), 323–351.CrossRefGoogle Scholar
  5. Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press.Google Scholar
  6. Anselin, L., Varga, A., & Acs, Z. J. (1997). Local geographic spillovers between university research and high technology innovations. Journal of Urban Economics, 42, 422–448.CrossRefGoogle Scholar
  7. Audretsch, D. B., Keilbach, M. C., & Lehmann, E. E. (2006). Entrepreneurship and economic growth. USA: Oxford University Press.CrossRefGoogle Scholar
  8. Barro, R. J. (1991). Economic growth in a cross section of countries, Quarterly Journal of Economics, 106(2), 407–444.Google Scholar
  9. Boussemart, J.-P., Briec, W., Kerstens, K., & Poutineau, J.-C. (2003). Luenberger and Malmquist productivity indices: Theoretical comparisons and empirical illustration. Bulletin of Economic Research, 55(4), 391–405.CrossRefGoogle Scholar
  10. Braunerhjelm, P., Acs, Z. J., Audretsch, D., & Carlsson, B. (2010). The missing link: Knowledge diffusion and entrepreneurship in endogenous growth. Small Business Economics, 34(2), 105–125.CrossRefGoogle Scholar
  11. Calinski, R. B., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1), 1–27.Google Scholar
  12. Chambers, R. G., & Pope, R. D. (1996). Aggregate productivity measures. American Journal of Agricultural Economics, 78(5), 1360–1365.CrossRefGoogle Scholar
  13. Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Handbook on data envelopment analysis (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  14. Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19, 273–292.CrossRefGoogle Scholar
  15. Dreher, A., Gaston, N., & Martens, P. (2008). Measuring Globalisation—gauging its consequences. New York: Springer.Google Scholar
  16. Epure, M., & Lafuente, E. (2015). Monitoring bank performance in the presence of risk. Journal of Productivity Analysis. doi:10.1007/s11123-014-0413-z.Google Scholar
  17. Everitt, B. S. (1980). Cluster analysis (2nd ed.). London: Heineman.Google Scholar
  18. Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84(1), 66–81.Google Scholar
  19. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120, 253–281.CrossRefGoogle Scholar
  20. Greene, W. (2003). Econometric analysis (5th ed.). New Jersey: Upper Saddler River.Google Scholar
  21. Grifell-Tatjé, E., & Lovell, C. A. K. (1999). Profits and productivity. Management Science, 45(9), 1177–1193.CrossRefGoogle Scholar
  22. Groh, A., Liechtenstein, H., & Lieser, K., (2012). The Global Venture Capital and Private Equity Country Attractiveness Index 2012 Annual. http://blog.iese.edu/vcpeindex/about/
  23. Mahlberg, B., & Sahoo, B. K. (2011). Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application. International Journal of Production Economics, 131(2), 721–726.CrossRefGoogle Scholar
  24. Miller, D. (1986). Configurations of strategy and structure: Towards a synthesis. Strategic Management Journal, 7, 233–249.CrossRefGoogle Scholar
  25. Miller, D. (1996). Configurations revisited. Strategic Management Journal, 17, 505–512.CrossRefGoogle Scholar
  26. Morck, R., Wolfenzon, D., & Yeung, D. (2004). Corporate governance, economic entrenchment and growth. National Bureau of Economic Research, Working paper 10692, August 2004.Google Scholar
  27. Nataraja, N. R., & Johnson, A. L. (2011). Guidelines for using variable selection techniques in data envelopment analysis. European Journal of Operational Research, 215(3), 662–669.CrossRefGoogle Scholar
  28. Pekka, S., Acs, Z. J., & Weubker, R. (2013). Exploring country level institutional arrangements on the rate and type of entrepreneurial activity. Journal of Business Venturing, 28(1), 176–193.CrossRefGoogle Scholar
  29. Plummer, L. A., Acs, Z. J. (2014). Localized competition in the knowledge spillover theory of entrepreneurship. Journal of Business Venturing, 29(1), 121–136.Google Scholar
  30. Romer, P. (1990). Endogenous technological change. Journal of Political Economy, 98(October), 71–102.CrossRefGoogle Scholar
  31. Ruggiero, J. (2005). Impact assessment of input omission on DEA. International Journal of Information Technology & Decision Making, 4(3), 359–368.CrossRefGoogle Scholar
  32. Sanandaji, T., & Leson, P. T. (2013). Billionairs. Industrial and Corporate Change, 22(1), 313–337.CrossRefGoogle Scholar
  33. Sengupta, J. K. (1987). Efficiency measurement in non-market systems through data envelopment analysis. International Journal of Systems Science, 18(12), 2279–2304.CrossRefGoogle Scholar
  34. Tone, K., & Sahoo, B. (2003). Scale, indivisibilities and production function in data envelopment analysis. International Journal of Production Economics, 84(2), 165–192.Google Scholar
  35. World Economic Forum. (2013). The Global Competitiveness Report 2013–2014. Geneva, SwitzerlandGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ManagementUniversitat Politècnica de Catalunya (Barcelona Tech)BarcelonaSpain
  2. 2.Faculty of Business and EconomicsUniversity of PécsPécsHungary
  3. 3.Department of ManagementLondon School of Economics and Political ScienceLondonUK

Personalised recommendations