Skip to main content
Log in

Fractional Poisson Processes of Order k and Beyond

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this article, we introduce fractional Poisson fields of order k in n-dimensional Euclidean space of positive real valued vectors. We also work on time-fractional Poisson process of order k, space-fractional Poisson processes of order k and a tempered version of time-space fractional Poisson processes of order k. We discuss generalized fractional Poisson processes of order k in terms of Bernstein functions. These processes are defined in terms of fractional compound Poisson processes. The time-fractional Poisson process of order k naturally generalizes the Poisson process and the Poisson process of order k to a heavy-tailed waiting-times counting process. The space-fractional Poisson process of order k allows on average an infinite number of arrivals in any interval. We derive the marginal probabilities governing difference–differential equations of the introduced processes. We also provide the Watanabe martingale characterization for some time-changed Poisson processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Aletti, G., Leonenko, N., Merzbach, E.: Fractional poisson fields and martingales. J. Stat. Phys. 170, 700–730 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  4. Biard, R., Saussereau, B.: Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Probab. 51, 727–740 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bingham, N.H.: Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 17, 1–22 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brémaud, P.: Point Processes and Queues. Springer, New York (1981)

    Book  MATH  Google Scholar 

  7. Cox, D.R.: Some statistical methods connected with series of events. J. Roy. Stat. Soc. 17, 129–164 (1955)

    MathSciNet  MATH  Google Scholar 

  8. Debnath, L., Bhatta, D.: Integral transforms and their applications (3rd Ed.), Chapman and Hall/CRC (2014)

  9. Fortelle, A. de La.: A study on generalized inverses and increasing functions Part I: generalized inverses. Markov Processes And Related Fields, (2015)

  10. Gupta, N., Kumar, A., Leonenko, N.: Tempered fractional poisson processes and fractional equations with \(Z\)-transform. Stoch. Anal. Appl. 38, 939–957 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta, N., Kumar, A., Leonenko, N.: Stochastic models with mixtures of tempered stable subordinators. Math. Commun. 26, 77–99 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Haubold, H. J., Mathai, A. M., Saxena, R. K.: Mittag-Leffler functions and their applications. J. Appl. Math. 1-51 (2011)

  13. Herbin, E., Merzbach, E.: The set-indexed Lévy process: stationarity, Markov and sample paths properties. Stoch. Process. Appl. 123, 1638–1670 (2013)

    Article  MATH  Google Scholar 

  14. Kallenberg, O.: Foundation of Modern Probbability. Springer-Verlag, New York (1997)

    Google Scholar 

  15. Kallenberg, O.: Foundations of Modern Probability: Probability and Its Applications, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  16. Kingman, J.: On doubly stochastic Poisson processes. In: Mathematical Proceedings of the Cambridge Philosophical Society. 60. Cambridge Univ Press, 923–930 (1964)

  17. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory. 71, 583–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kostadinova, K.Y., Minkova, L.D.: On the poisson process of order k. Pliska Stud. Math. Bulgar. 22, 117–128 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Kumar, A., Nane, E.: On the infinite divisibility of distributions of some inverse subordinators. Mod. Stoch. 5, 509–519 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, A., Vellaisamy, P.: Inverse Tempered Stable Subordinators. Statist. Probab. Lett. 103, 134–141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 02, 201–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leonenko, N., Merzbach, E.: Fractional poisson fields. Methodol. Comput. Appl. Probab. 17, 155–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maheshwari, A., Vellaisamy, P.: Fractional Poisson process time-changed by Lévy subordinator and its inverse. J. Theoret. Probab. 32, 1278–1305 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maheshwari, A., Vellaisamy, P.: Non-homogeneous space-time fractional Poisson processes. Stoch. Anal. Appl. 37, 137–154 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meerschaert, M.M., Sikorski, A.: Stochastic models for fractional calculus. De Gruyter studies in Mathematics, (2012)

  27. Merzbach, E., Nualart, D.: A characterization of the spatial Poisson process and changing time. Ann. Probab. 14, 1380–1390 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mikosch, T.: Non-Life Insurance Mathematics: an Introduction with the Poisson Process. Springer, (2009)

  29. Orsingher, E., Polito, F.: The space-fractional Poisson process. Statist. Probab. Lett. 82, 852–858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Orsingher, E., Toaldo, B.: Counting processes with Bernštein intertimes and random jumps. J. Appl. Probab. 52, 1028–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Orsingher, E., Ricciuti, C., Toaldo, B.: Time-inhomogeneous jump processes and variable order operators. Potential Anal. 45, 435–461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Philippou, A.N.: Poisson and compound poisson distributions of order k and some of their properties. J. Sov. Math. 27, 3294–3297 (1984)

    Article  MATH  Google Scholar 

  33. Philippou, A.N., Georghiou, C., Philippou, G.N.: A generalized geometric distribution and some of its properties. Stat. Probab. Lett. 1, 171–175 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math J 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ross, Sheldon M.: Introduction to probability models. Academic Press, Amsterdam (2009)

    Google Scholar 

  37. Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

  38. Schilling, R. L., Song R., Vondracek, Z.: Bernstein functions: theory and applications. Walter de Gruyter GmbH & Company KG. 37 (2010)

  39. Steutel, F.W., Van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  40. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic geometry and its applications. Wiley, New York (1995)

    MATH  Google Scholar 

  41. Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed C0-semigroups. Potential Anal. 42(1), 115–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tzougas, G.: EM estimation for the poisson-inverse gamma regression model with varying dispersion: an application to insurance ratemaking. Risks 8, 97 (2020)

    Article  Google Scholar 

  43. Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. VSP, Utrecht (1999)

    Book  MATH  Google Scholar 

  44. Watanabe, S.: On discontinuous additive functionals and Lévy measures of a Markov process. Japan. J. Math. 34, 53–70 (1964)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for several helpful comments and suggestions, which have led to improvements in the paper. N.G. is supported by the institute research fellowship of Indian Statistical Institute Delhi, India. Further, A.K. would like to express his gratitude to Science and Engineering Research Board (SERB), India for financial support under the MATRICS research grant MTR/2019/000286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, A. Fractional Poisson Processes of Order k and Beyond. J Theor Probab 36, 2165–2191 (2023). https://doi.org/10.1007/s10959-023-01268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-023-01268-3

Keywords

Mathematics Subject Classification (2020)

Navigation