Abstract
Replacing the Lebesgue measure on an interval by a Stieltjes positive non-atomic measure, we study the corresponding counterpart of the Brownian motion. We introduce a new heat equation associated with the measure and make connections with stationary-increments Gaussian processes. We introduce a new transform analysis, and heat equation, associated with the measure, and make connections here too with stationary-increments and stationary Gaussian processes. In the main result of this paper (Theorem 7.2), we use white noise space analysis to derive a new heat equation associated with a (wide class of) stationary-increments Gaussian processes.
This is a preview of subscription content, access via your institution.
Data availability statement
No associated data.
References
Akahori, J., Constantinescu, C., Miyagi, K.: Itô calculus for Cramér–Lundberg model. JSIAM Lett. 12, 25–28 (2020)
Akhiezer, N.I.: The classical moment problem. Moscow (1961) (in Russian)
Alpay, D., Jorgensen, P.: New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry. Opusc. Math. 41, 283–300 (2021)
Alpay, D., Attia, H., Levanony, D.: On the characteristics of a class of Gaussian processes within the white noise space setting. Stoch. Process. Appl. 120, 1074–1104 (2010)
Alpay, D., Jorgensen, P., Levanony, D.: A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261(2), 507–541 (2011)
Alpay, D., Attia, H., Levanony, D.: White noise based stochastic calculus associated with a class of Gaussian processes. Opusc. Math. 32(3), 401–422 (2012)
Alpay, D., Jorgensen, P., Levanony, D.: On the equivalence of probability spaces. J. Theor. Probab. 30(3), 813–841 (2017)
Bachelier, L.: Théorie de la spéculation. Ann. Sci. École Norm. Sup. 3(17), 21–86 (1900)
Barnsley, M., Vince, A.: Fractal tilings from iterated function systems. Discrete Comput. Geom. 51(3), 729–752 (2014)
Biagini, F., Øksendal, B., Sulem, A., Wallner, N.: An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, stochastic analysis with applications to mathematical finance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2041), 347–372 (2004)
Cuzzocrea, A., Mumolo, E., Grasso, G.-M.: Genetic estimation of iterated function systems for accurate fractal modeling in pattern recognition tools. In: Computational Science and its Applications—ICCSA 2017. Part I, Lecture Notes in Comput. Sci., vol. 10404, pp. 357–371. Springer, Cham (2017)
Dym, H., McKean, H.P.: Gaussian Processes, Function Theory and the Inverse Spectral Problem. Academic Press, London (1976)
Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1956).. (Edited with notes by R. Fürth, Translated by A. D. Cowper)
Herr, J.E., Jorgensen, P., Weber, E.: Positive matrices in the Hardy space with prescribed boundary representations via the Kaczmarz algorithm. J. Anal. Math. 138(1), 209–234 (2019)
Hida, T.: Brownian Motion. Applications of Mathematics, vol. 11. Springer, New York (1980). Translated from the Japanese by the author and T. P. Speed
Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Probability and its Applications. Birkhäuser Boston, Boston (1996)
Jorgensen, P., Tian, F.: Random measures in infinite-dimensional dynamics. In: Advanced Topics in Mathematical Analysis, pp. 1–38. CRC Press, Boca Raton, FL (2019)
Jorgensen, P., Pearse, E.: Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics. Math. Phys. Anal. Geom. 20(2), 14, 24 (2017)
Jorgensen, P., Tian, F.: Realizations and factorizations of positive definite kernels. J. Theoret. Probab. 32(4), 1925–1942 (2019)
Jorgensen, P., Tian, J.: Reproducing kernels and choices of associated feature spaces, in the form of \(L^2\)-spaces. J. Math. Anal. Appl. 505(2), 125535 (2022)
Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1988)
Krein, M.G.: Izbrannye trudy. I. Akad. Nauk Ukrainy Inst. Mat., Kiev (1993). Kompleksnyi analiz, ekstrapolyatsiya, interpolyatsiya, ermitovo-polozhitelnye funktsii i primykayushchie voprosy. [Complex analysis, extrapolation, interpolation, Hermitian-positive functions and related topics], With a biographical sketch of Kreĭn by D. Z. Arov, Yu. M. Berezanskiĭ, N. N. Bogolyubov, V. I. Gorbachuk, M. L. Gorbachuk, Yu. A. Mitropol’ skiĭ and L. D. Faddeev
Krein, M.G.: On the problem of continuation of helical arcs in Hilbert space. C. R. (Doklady) Acad. Sci. URSS (N.S.) 45, 139–142 (1944)
Ledesma, D.S.: Stochastic calculus on Fréchet spaces. Adv. Oper. Theory 6(1), 22, 31 (2021)
Liu, W., Jiang, Y., Li, Z.: Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions. AIMS Math. 5(3), 2163–2195 (2020)
Neveu, J.: Processus aléatoires gaussiens. Number 34 in Séminaires de mathématiques supérieures. Les presses de l’université de Montréal, (1968)
Pham, M.-D.: Fractal approximation of chaos game representations using recurrent iterated function systems. AIMS Math. 4(6), 1824–1840 (2019)
Rényi, A.: Calcul des probabilités. Avec un appendice sur la théorie de l’information. Traduit de l’allemand par C. Bloch. Collection Universitaire de Mathématiques, No. 21. Dunod, Paris (1966)
Schied, A., Zhang, Z.: On the \(p\)th variation of a class of fractal functions. Proc. Am. Math. Soc. 148(12), 5399–5412 (2020)
Taqqu, M.S.: Bachelier and his times: a conversation with Bernard Bru. Finance Stoch. 5(1), 3–32 (2001)
von Neumann, J., Schoenberg, I.J.: Fourier integrals and metric geometry. Trans. Am. Math. Soc. 50, 226–251 (1941)
Zheng, Y., Liu, R., Niu, X.: An improved fractal image compression approach by using iterated function system and genetic algorithm. Comput. Math. Appl. 51(11), 1727–1740 (2006)
Acknowledgements
Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research. It is a pleasure to thank Professor David Levanony and Professor Izchak Lewkowicz for discussions and inspiration. It is also a pleasure to thank the referee for his/her comments which helped improve the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alpay, D., Jorgensen, P. mu-Brownian Motion, Dualities, Diffusions, Transforms, and Reproducing Kernel Hilbert Spaces. J Theor Probab 35, 2757–2783 (2022). https://doi.org/10.1007/s10959-021-01146-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-021-01146-w
Keywords
- Gaussian processes
- Stationary square-increments
- Itô calculus
- Malliavin derivative
- Stochastic Fourier transform
- Diffusion
- Fractal
- White noise space analysis
- Reproducing kernels
Mathematics Subject Classification (2020)
- 60J22
- 60J70
- 46E22