Skip to main content

mu-Brownian Motion, Dualities, Diffusions, Transforms, and Reproducing Kernel Hilbert Spaces

Abstract

Replacing the Lebesgue measure on an interval by a Stieltjes positive non-atomic measure, we study the corresponding counterpart of the Brownian motion. We introduce a new heat equation associated with the measure and make connections with stationary-increments Gaussian processes. We introduce a new transform analysis, and heat equation, associated with the measure, and make connections here too with stationary-increments and stationary Gaussian processes. In the main result of this paper (Theorem 7.2), we use white noise space analysis to derive a new heat equation associated with a (wide class of) stationary-increments Gaussian processes.

This is a preview of subscription content, access via your institution.

Data availability statement

No associated data.

References

  1. Akahori, J., Constantinescu, C., Miyagi, K.: Itô calculus for Cramér–Lundberg model. JSIAM Lett. 12, 25–28 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akhiezer, N.I.: The classical moment problem. Moscow (1961) (in Russian)

  3. Alpay, D., Jorgensen, P.: New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry. Opusc. Math. 41, 283–300 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpay, D., Attia, H., Levanony, D.: On the characteristics of a class of Gaussian processes within the white noise space setting. Stoch. Process. Appl. 120, 1074–1104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alpay, D., Jorgensen, P., Levanony, D.: A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261(2), 507–541 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alpay, D., Attia, H., Levanony, D.: White noise based stochastic calculus associated with a class of Gaussian processes. Opusc. Math. 32(3), 401–422 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alpay, D., Jorgensen, P., Levanony, D.: On the equivalence of probability spaces. J. Theor. Probab. 30(3), 813–841 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bachelier, L.: Théorie de la spéculation. Ann. Sci. École Norm. Sup. 3(17), 21–86 (1900)

    Article  MATH  Google Scholar 

  9. Barnsley, M., Vince, A.: Fractal tilings from iterated function systems. Discrete Comput. Geom. 51(3), 729–752 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Biagini, F., Øksendal, B., Sulem, A., Wallner, N.: An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, stochastic analysis with applications to mathematical finance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2041), 347–372 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cuzzocrea, A., Mumolo, E., Grasso, G.-M.: Genetic estimation of iterated function systems for accurate fractal modeling in pattern recognition tools. In: Computational Science and its Applications—ICCSA 2017. Part I, Lecture Notes in Comput. Sci., vol. 10404, pp. 357–371. Springer, Cham (2017)

  12. Dym, H., McKean, H.P.: Gaussian Processes, Function Theory and the Inverse Spectral Problem. Academic Press, London (1976)

    MATH  Google Scholar 

  13. Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1956).. (Edited with notes by R. Fürth, Translated by A. D. Cowper)

    MATH  Google Scholar 

  14. Herr, J.E., Jorgensen, P., Weber, E.: Positive matrices in the Hardy space with prescribed boundary representations via the Kaczmarz algorithm. J. Anal. Math. 138(1), 209–234 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hida, T.: Brownian Motion. Applications of Mathematics, vol. 11. Springer, New York (1980). Translated from the Japanese by the author and T. P. Speed

  16. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Probability and its Applications. Birkhäuser Boston, Boston (1996)

    Book  MATH  Google Scholar 

  17. Jorgensen, P., Tian, F.: Random measures in infinite-dimensional dynamics. In: Advanced Topics in Mathematical Analysis, pp. 1–38. CRC Press, Boca Raton, FL (2019)

  18. Jorgensen, P., Pearse, E.: Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics. Math. Phys. Anal. Geom. 20(2), 14, 24 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jorgensen, P., Tian, F.: Realizations and factorizations of positive definite kernels. J. Theoret. Probab. 32(4), 1925–1942 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jorgensen, P., Tian, J.: Reproducing kernels and choices of associated feature spaces, in the form of \(L^2\)-spaces. J. Math. Anal. Appl. 505(2), 125535 (2022)

    Article  MATH  MathSciNet  Google Scholar 

  21. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1988)

    Book  MATH  Google Scholar 

  22. Krein, M.G.: Izbrannye trudy. I. Akad. Nauk Ukrainy Inst. Mat., Kiev (1993). Kompleksnyi analiz, ekstrapolyatsiya, interpolyatsiya, ermitovo-polozhitelnye funktsii i primykayushchie voprosy. [Complex analysis, extrapolation, interpolation, Hermitian-positive functions and related topics], With a biographical sketch of Kreĭn by D. Z. Arov, Yu. M. Berezanskiĭ, N. N. Bogolyubov, V. I. Gorbachuk, M. L. Gorbachuk, Yu. A. Mitropol’ skiĭ and L. D. Faddeev

  23. Krein, M.G.: On the problem of continuation of helical arcs in Hilbert space. C. R. (Doklady) Acad. Sci. URSS (N.S.) 45, 139–142 (1944)

    MATH  MathSciNet  Google Scholar 

  24. Ledesma, D.S.: Stochastic calculus on Fréchet spaces. Adv. Oper. Theory 6(1), 22, 31 (2021)

    Article  MATH  Google Scholar 

  25. Liu, W., Jiang, Y., Li, Z.: Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions. AIMS Math. 5(3), 2163–2195 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  26. Neveu, J.: Processus aléatoires gaussiens. Number 34 in Séminaires de mathématiques supérieures. Les presses de l’université de Montréal, (1968)

  27. Pham, M.-D.: Fractal approximation of chaos game representations using recurrent iterated function systems. AIMS Math. 4(6), 1824–1840 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rényi, A.: Calcul des probabilités. Avec un appendice sur la théorie de l’information. Traduit de l’allemand par C. Bloch. Collection Universitaire de Mathématiques, No. 21. Dunod, Paris (1966)

  29. Schied, A., Zhang, Z.: On the \(p\)th variation of a class of fractal functions. Proc. Am. Math. Soc. 148(12), 5399–5412 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  30. Taqqu, M.S.: Bachelier and his times: a conversation with Bernard Bru. Finance Stoch. 5(1), 3–32 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. von Neumann, J., Schoenberg, I.J.: Fourier integrals and metric geometry. Trans. Am. Math. Soc. 50, 226–251 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zheng, Y., Liu, R., Niu, X.: An improved fractal image compression approach by using iterated function system and genetic algorithm. Comput. Math. Appl. 51(11), 1727–1740 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research. It is a pleasure to thank Professor David Levanony and Professor Izchak Lewkowicz for discussions and inspiration. It is also a pleasure to thank the referee for his/her comments which helped improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alpay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, D., Jorgensen, P. mu-Brownian Motion, Dualities, Diffusions, Transforms, and Reproducing Kernel Hilbert Spaces. J Theor Probab 35, 2757–2783 (2022). https://doi.org/10.1007/s10959-021-01146-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01146-w

Keywords

  • Gaussian processes
  • Stationary square-increments
  • Itô calculus
  • Malliavin derivative
  • Stochastic Fourier transform
  • Diffusion
  • Fractal
  • White noise space analysis
  • Reproducing kernels

Mathematics Subject Classification (2020)

  • 60J22
  • 60J70
  • 46E22