Aaronson, J.: An Introduction to Infinite Ergodic Theory. Number 50. American Mathematical Society, Providence (1997)
Book
Google Scholar
Bai, S.: Representations of Hermite processes using local time of intersecting stationary stable regenerative sets. J. Appl. Probab. (2019). arXiv preprint arXiv:1910.07120
Bai, S., Taqqu, M.S.: Limit theorems for long-memory flows on Wiener chaos. Bernoulli 26(2), 1473–1503 (2020)
MathSciNet
Article
Google Scholar
Bai, S., Owada, T., Wang, Y.: A functional non-central limit theorem for multiple-stable processes with long-range dependence. Stoch. Process. Appl. 130(9), 5768–5801 (2020)
MathSciNet
Article
Google Scholar
Bingham, N., Goldie, C., Teugels, J.: Regular Variation. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1989)
MATH
Google Scholar
Chen, Z., Samorodnitsky, G.: Extremal clustering under moderate long range dependence and moderately heavy tails. arXiv preprint arXiv:2003.05038 (2020a)
Chen, Z., Samorodnitsky, G.: Extreme value theory for long-range-dependent stable random fields. J. Theor. Probab. 33(4), 1894–1918 (2020b)
MathSciNet
Article
Google Scholar
Dobrushin, R., Major, P.: Non-central limit theorems for non-linear functional of Gaussian fields. Probab. Theory Relat. Fields 50(1), 27–52 (1979)
MATH
Google Scholar
Giraitis, L., Koul, H., Surgailis, D.: Large Sample Inference for Long Memory Processes. World Scientific Publishing Company Incorporated, Hackensack (2012)
Book
Google Scholar
Gouëzel, S.: Correlation asymptotics from large deviations in dynamical systems with infinite measure. In: Colloquium Mathematicum, vol. 125, pp. 193–212. Instytut Matematyczny Polskiej Akademii Nauk (2011)
Hajian, A.B., Kakutani, S.: Weakly wandering sets and invariant measures. Trans. Am. Math. Soc. 110(1), 136–151 (1964)
MathSciNet
Article
Google Scholar
Itô, K.: Multiple Wiener integral. J. Math. Soc. Jpn. 3(1), 157–169 (1951)
MathSciNet
Article
Google Scholar
Janson, S.: Gaussian Hilbert Spaces, vol. 129. Cambridge University Press, Cambridge (1997)
Book
Google Scholar
Jung, P., Owada, T., Samorodnitsky, G.: Functional central limit theorem for a class of negatively dependent heavy-tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab. 45(4), 2087–2130 (2017)
MathSciNet
Article
Google Scholar
Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2002)
Book
Google Scholar
Kallenberg, O.: Random Measures Theory and Applications. Springer, Berlin (2017)
Book
Google Scholar
Kesseböhmer, M., Slassi, M.: Limit laws for distorted critical return time processes in infinite ergodic theory. Stoch. Dyn. 7(01), 103–121 (2007)
MathSciNet
Article
Google Scholar
Krickeberg, K.: Strong mixing properties of Markov chains with infinite invariant measure. In: Proceedings Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), vol. 2, pp. 431–446 (1967)
Lacaux, C., Samorodnitsky, G.: Time-changed extremal process as a random sup measure. Bernoulli 22(4), 1979–2000 (2016)
MathSciNet
Article
Google Scholar
Melbourne, I., Terhesiu, D.: Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189(1), 61–110 (2012)
MathSciNet
Article
Google Scholar
Owada, T.: Limit theory for the sample autocovariance for heavy-tailed stationary infinitely divisible processes generated by conservative flows. J. Theor. Probab. 29(1), 63–95 (2016)
MathSciNet
Article
Google Scholar
Owada, T., Samorodnitsky, G.: Maxima of long memory stationary symmetric \(alpha\)-stable processes, and self-similar processes with stationary max-increments. Bernoulli 21(3), 1575–1599 (2015a)
MathSciNet
Article
Google Scholar
Owada, T., Samorodnitsky, G.: Functional central limit theorem for heavy tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab. 43(1), 240–285 (2015b)
MathSciNet
Article
Google Scholar
Peccati, G., Taqqu, M.: Wiener Chaos: Moments, Cumulants and Diagrams: a Survey with Computer Implementation. Springer, Berlin (2011)
Book
Google Scholar
Pipiras, V., Taqqu, M.: Long-Range Dependence and Self-Similarity, vol. 45. Cambridge University Press, Cambridge (2017)
Book
Google Scholar
Rosinski, J.: On series representations of infinitely divisible random vectors. Ann Probab 405–430 (1990)
Rosinski, J., Samorodnitsky, G.: Product formula, tails and independence of multiple stable integrals. Adv. Stoch. Inequal. (Atlanta, GA, 1997) 234, 169–194 (1999)
MathSciNet
Article
Google Scholar
Samorodnitsky, G.: Stochastic Processes and Long Range Dependence, vol. 26. Springer, Berlin (2016)
Book
Google Scholar
Samorodnitsky, G., Szulga, J.: An asymptotic evaluation of the tail of a multiple symmetric \(\alpha \)-stable integral. Ann. Probab. 1503–1520 (1989)
Samorodnitsky, G., Wang, Y.: Extremal theory for long range dependent infinitely divisible processes. Ann. Probab. 47(4), 2529–2562 (2019)
MathSciNet
Article
Google Scholar
Schmüdgen, K.: The Moment Problem, vol. 9. Springer, Berlin (2017)
Book
Google Scholar
Slud, E.: The moment problem for polynomial forms in normal random variables. Ann Probab. 2200–2214 (1993)
Szulga, J.: Multiple stochastic integrals with respect to symmetric infinitely divisible random measures. Ann. Probab. 1145–1156 (1991)
Taqqu, M.: Convergence of integrated processes of arbitrary Hermite rank. Probab. Theory Relat. Fields 50(1), 53–83 (1979)
MathSciNet
MATH
Google Scholar