Skip to main content
Log in

Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (yz)

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we investigate backward stochastic differential equations driven by G-Brownian motion with uniformly continuous coefficients in (yz). The existence and uniqueness of solutions are obtained via a method of Picard iteration, a linearization method and a monotone convergence argument. Furthermore, we establish the corresponding comparison theorem and related nonlinear Feynman–Kac formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  Google Scholar 

  2. Peng, S.: A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation. Stoch. Stoch. Rep. 38, 119–134 (1992)

    Article  MathSciNet  Google Scholar 

  3. Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MathSciNet  Google Scholar 

  4. Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic parial differential equations. Lect. Notes Contorl Inf. Sci. 176, 200–217 (1992)

    MATH  Google Scholar 

  5. Peng, S.: Probabilistic interpreation for systems of quasi-linear parabolic partial differential equations. Stoch. Stoch. Rep. 37, 61–74 (1991)

    Article  Google Scholar 

  6. Pardoux, E., Pardeilles, F., Rao, Z.: Probabilistic interpretation of a system of semi-linear parabolic partial differential equations. Ann. Inst. H. Poincar Probab. Statist. 33(4), 467–490 (1997)

    Article  MathSciNet  Google Scholar 

  7. Lepeliter, J.P., Martin, J.S.: Backward stochastic differential equations with continuous coefficients. Stat. Probab. Lett. 34, 425–430 (1997)

    Article  MathSciNet  Google Scholar 

  8. Kobylanski, M.: Backward stochastic differential equations and partial equations with quadratic growth. Ann. Prob. 28, 558–602 (2000)

    Article  MathSciNet  Google Scholar 

  9. Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields 136, 604–618 (2006)

    Article  MathSciNet  Google Scholar 

  10. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Fields 141, 543–567 (2008)

    Article  MathSciNet  Google Scholar 

  11. Jia, G.: A uniqueness theorem for the solution of backward stochastic differential equations. C. R. Acad. Sci. Paris Ser. I(346), 439–444 (2008)

    Article  MathSciNet  Google Scholar 

  12. Chen, S.: \(L^{p}\) solutions of one-dimensional backward stochastic differential equations with continuous coefficients. Stoch. Anal. Appl. 28(5), 820–841 (2010)

    Article  MathSciNet  Google Scholar 

  13. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty (2010). arXiv:1002.4546

  14. Gao, F.: Pathwise properties and homomorphic flows for stochastic differential equations driven by \(G\)-Brownian motion. Stoch. Proc. Appl. 119, 3356–3382 (2009)

    Article  Google Scholar 

  15. Bai, X., Lin, Y.: On the existence and uniqueness of solutions to stochastic differential equations driven by \(G\)-Brownian motion with integral-Lipschitz coffefficients. Acta. Math. Appl. Sin. Engl. Ser. 30(3), 589–610 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hu, M., Ji, S., Peng, S., Song, Y.: Backward stochastic differential equations driven by \(G\)-Brownian motion. Stoch. Proc. Appl. 124, 759–784 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hu, M., Ji, S., Peng, S., Song, Y.: Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by \(G\)-Brownian motion. Stoch. Proc. Appl. 124, 1170–1195 (2014)

    Article  MathSciNet  Google Scholar 

  18. Hi, Y., Lin, Y., Soumana Hima, A.: Quadratic backward stochastic differential stochastic equations driven by \(G\)-Brownian motion: discrete solutions and approximation. Stoch. Proc. Appl. 128, 3724–3750 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wang, F., Zheng, G.: Backward stochastic differential equations driven by \(G\)-Brownian motion with uniformly continuous generators. J. Theor. Probab. (2020). https://doi.org/10.1007/s10959-020-00998-y

    Article  MATH  Google Scholar 

  20. Peng, S.: \(G\)-expectation, \(G\)-Browmian motion and related stochastic calculus of Itô type. In: Stochastic Analysis and Applications. Abel Symposium, vol. 2, pp. 541-567. Springer, Berlin (2007)

  21. Peng, S.: Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation. Stoch. Proc. Appl. 118(12), 2223–2253 (2008)

    Article  MathSciNet  Google Scholar 

  22. Song, Y.: Some properties on \(G\)-evaluation and its applications to \(G\)-martingale decomposition. Sci. China Math. 54, 287–300 (2011)

    Article  MathSciNet  Google Scholar 

  23. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths. Poteneial Anal. 34, 139–161 (2011)

    Article  MathSciNet  Google Scholar 

  24. Liu, G.: Multi-dimensional BSDEs driven by \(G\)-Brownian motion and related system of fully nonlinear PDEs. Stochastics (2019). https://doi.org/10.1080/17442508.2019.1650042

    Article  Google Scholar 

  25. Hamadène, S.: Multidimensional backward stochastic differential equations with uniformly continuous coefficients. Bernoulli 9(3), 517–534 (2003)

    Article  MathSciNet  Google Scholar 

  26. Li, H., Peng, S.: Stopping times and related Itô’s calculus with \(G\)-Brownian motion. Stoch. Proc. Appl. 121, 1492–1508 (2011)

    Article  Google Scholar 

  27. Hu, M., Wang, F., Zheng, G.: Quasi-continuous random variables and processes under \(G\)-expectation framework. Stoch. Proc. Appl. 126, 2367–2387 (2016)

    Article  MathSciNet  Google Scholar 

  28. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful for the anonymous for their careful reading of the manuscript and their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiu Sun.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Comparison Theorem for PDE (4.7)

Appendix: Comparison Theorem for PDE (4.7)

Theorem A.1

Suppose assumptions (A1)–(A3) hold. Let \(u^1\) be a viscosity subsolution and \(u^2\) be a viscosity supersolution to PDE (4.7) satisfying the polynomial growth condition, respectively. Then, \(u^1\le u^2\) on \([0, T]\times \mathbb {R}^{n}\) provided that \(u^1|_{t=T}\le u^2|_{t=T}\).

By doing the transformation \(v(t,x):=u(T-t,x)\), we know that if we want to get the comparison theorem A.1 for PDE (4.7), we only need to prove the following comparison theorem A.2 for PDE

$$\begin{aligned} \left\{ \begin{array}{ll} &{}\partial _{t}v-F(t,x,v(t,x),D_{x}v,D^{2}_{x}v)=0\\ &{} v(0,x)=\phi (x),\\ \end{array} \right. \end{aligned}$$
(A.1)

where F is defined by (4.8). For the definition of the viscosity solution to PDE (A.1), see Definition 1.1 in Appendix C of [13].

Theorem A.2

Suppose assumptions (A1)–(A3) hold. Let \(v^1\) be a viscosity subsolution and \(v^2\) be a viscosity supersolution to PDE (A.1) satisfying the polynomial growth condition, respectively. Then, \(v^1\le v^2\) on \([0, T]\times \mathbb {R}^{n}\) provided that \(v^1|_{t=0}\le v^2|_{t=0}\).

Proof

The main idea comes from Theorem 2.2 in Appendix C of [13]. For reader’s convenience, we give a brief proof.

step1.

For a large constant \(\lambda >0 \) to be chosen in step 2, we set \(\eta (x):=(1+|x|^{2})^{l/2}\) and

$$\begin{aligned} v_1(t,x):=v^1(t,x)\eta ^{-1} (x)e^{-\lambda t}, \ v_2(t,x):=v^2(t,x)\eta ^{-1} (x)e^{-\lambda t}, \end{aligned}$$

where \(l\ge 2\) is chosen to be large enough such that \(|v_{1}|+|v_{2}|\rightarrow 0\) uniformly as \(|x|\rightarrow \infty \). It is easy to verify that, for \(i=1,2\), \(v_{i}\) is a bounded viscosity subsolution of

$$\begin{aligned} \partial _{t}v_{i}+\lambda v_i-F^*_i(t,x,v _{i},Dv_i,D^{2}v_{i})=0, \end{aligned}$$

where the function \(F^*_1(t,x,v,p,X)=F^*(t,x,v,p,X), F^*_2(t,x,v,p,X)=-F^*(t,x,-v,-p,-X)\) and

$$\begin{aligned}&F^*(t,x,v,p,X)\\&\quad :=e^{-\lambda t}\eta ^{-1}(x)F(t,x,e^{\lambda t}v\eta (x),e^{\lambda t}(p\eta (x)+vD\eta (x) ),e^{\lambda t}(X\eta (x)\\&\qquad +p\otimes D\eta (x) +D\eta (x) \otimes p+vD^{2}\eta (x) )) \end{aligned}$$

for any \((x,v,p,X)\in \mathbb {R}^n\times \mathbb {R}\times \mathbb {R}^n\times \mathbb {S}_{n}\). Here, \(p\otimes D\eta (x)=(p^iD_{x_{j}}\eta )^{n}_{i,j=1}\) and

$$\begin{aligned} D\eta (x)&=l \eta (x)(1+|x|^{2})^{-1}x,\ \ \ \ \\ \ D^{2}\eta (x)&=\eta (x)[l(1+|x|^{2})^{-1}I_{n}+l(l-2)(1+|x|^{2})^{-2}x\otimes x]. \end{aligned}$$

Obviously, for \(l\ge 2\), \(\eta ^{-1}(x)D\eta (x)\) and \(\eta ^{-1}(x)D^{2}\eta (x)\) are uniformly bounded functions.

Now, prove that \(v_{1}+v_{2}\le 0\). According to the proof of Theorem 2.2 in [13], it suffices to prove the conclusion under the additional assumptions: for each \(\bar{\delta }>0\),

$$\begin{aligned} \partial _{t}v_{i}+\lambda v_{i} -F^*_{i}(t,x,v_{i},Dv_{i},D^{2}v_{i})\le -\bar{\delta }/T^{2},\ \text {and }\lim _{t\rightarrow T}v_{i}(t,x)=-\infty \ \text {uniformly on } \mathbb {R}^{n}. \end{aligned}$$
(A.2)

Assume the contrary that

$$\begin{aligned} \sup _{(t,x)\in [0,T)\times \mathbb {R}^{n}}(v_{1}(t,x)+v_{2}(t,x))>0. \end{aligned}$$

Notice that \(\left( v_1(t,x)+v_2(t,x)\right) ^+\rightarrow 0\) uniformly as \(|x|\rightarrow \infty \). Then, according to the proof of Theorem 2.2 in [13], for large enough \(\alpha >0\), there exists some point \((t^{\alpha },x_{1}^{\alpha },x_{2}^{\alpha })\) inside a compact subset of \([0,T)\times \mathbb {R}^{2n}\) such that \(v_{1}(t^{\alpha },x_{1}^{\alpha })+v_{2}(t^{\alpha },x_{2}^{\alpha })-\frac{\alpha }{2}|x_{1}^{\alpha }-x_{2}^{\alpha }|^2>0\) and

$$\begin{aligned} \ \lim _{\alpha \rightarrow \infty }\alpha |x_{1}^{\alpha }-x_{2}^{\alpha }|^2=0, \ \text {and}\ \lim _{\alpha \rightarrow \infty }(t^\alpha ,x_{1}^{\alpha },x_{2}^{\alpha })=(\hat{t},\hat{x},\hat{x})\ \hbox { for some}\ (\hat{t},\hat{x})\in (0,T)\times \mathbb {R}^n. \end{aligned}$$

Then, there exist \(b_{i}^{\alpha }\in \mathbb {R}\), \(X_{i}^{\alpha }\in \mathbb {S}_{n}\) such that \(b_1^{\alpha }+b^{\alpha }_2=0\),

$$\begin{aligned} (b_{1}^{\alpha },p_{1}^{\alpha },X_{1}^{\alpha } )\in \mathcal {\bar{P}}^{2,+}v_{1}(t^{\alpha },x_{1}^{\alpha }), \ \ (b_{2}^{\alpha },p_{2}^{\alpha },X_{2}^{\alpha } )\in \mathcal {\bar{P}}^{2,+}v_{2}(t^{\alpha },x_{2}^{\alpha }), \end{aligned}$$

and

$$\begin{aligned} \left( \begin{array}[c]{cccc} X_1^{\alpha } &{} 0\\ 0 &{} X_2^{\alpha } \end{array} \right) \le A+\frac{1}{\alpha }A^{2}, \ A=\alpha \left( \begin{array}[c]{cccc} I_n &{} -I_n\\ -I_n &{} I_n \end{array}\right) , \end{aligned}$$

where \(p_{1}^{\alpha }=\alpha (x_{1}^{\alpha }-x_{2}^{\alpha }), p_{2}^{\alpha }=\alpha (x_{2}^{\alpha }-x_{1}^{\alpha }).\) Obviously, \(p_{1}^{\alpha }+p_{2}^{\alpha }=0\), \( \lim _{\alpha \rightarrow \infty }|p_{i}^{\alpha }||x_{1}^{\alpha }-x_{2}^{\alpha }|=0\) and

$$\begin{aligned} \left( \begin{array}[c]{cccc} X_1^{\alpha } &{} 0\\ 0 &{} X_2^{\alpha } \end{array} \right) \le 3\alpha \left( \begin{array}[c]{cccc} I_n &{} -I_n\\ -I_n &{} I_n \end{array}\right) . \end{aligned}$$
(A.3)

Moreover, it follows from Eq. (A.2) that

$$\begin{aligned}&b_{1}^{\alpha }+\lambda v_{1}(t^\alpha ,x_1^{\alpha }) -F^*_{1}(t^{\alpha },x_1^{\alpha },v_{1}(t^\alpha ,x_1^{\alpha }),p_{1}^{\alpha },X_1^{\alpha })\le -\bar{\delta }/T^{2},\\&b_{2}^{\alpha }+\lambda v_{2}(t^\alpha ,x_2^{\alpha }) -F^*_{2}(t^{\alpha },x_2^{\alpha },v_{2}(t^\alpha ,x_2^{\alpha }),p_{2}^{\alpha },X_2^{\alpha })\le -\bar{\delta }/T^{2}. \end{aligned}$$

According to the definition of \(F^*_i\), we derive that

$$\begin{aligned} -2\bar{\delta }/T^{2}&\ge \lambda v_{2}(t^{\alpha },x_{2}^{\alpha })+F^*(t^{\alpha },x_{2}^{\alpha },-v_{2}(t^{\alpha },x_{2}^{\alpha }),p_{1}^{\alpha },-X_{2}^{\alpha })\\&\quad +\lambda v_{1}(t^{\alpha },x_{1}^{\alpha })-F^*(t^{\alpha },x_{1}^{\alpha },v_{1}(t^{\alpha },x_{1}^{\alpha }),p_{1}^{\alpha },X_{1}^{\alpha }),\\&:=I_{1}^{\alpha }+I_{2}^{\alpha }, \end{aligned}$$

where

$$\begin{aligned} I_{1}^{\alpha }&:=\lambda v_{2}(t^{\alpha },x_{2}^{\alpha })+F^*(t^{\alpha },x_{2}^{\alpha },-v_{2}(t^{\alpha },x_{2}^{\alpha }),p_{1}^{\alpha },-X_{2}^{\alpha }) +\lambda v_{1}(t^{\alpha },x_{1}^{\alpha })\\&\quad -F^*(t^{\alpha },x_{2}^{\alpha },v_{1}(t^{\alpha },x_{1}^{\alpha }),p_{1}^{\alpha },-X_{2}^{\alpha })\\ I_{2}^{\alpha }&:=F^*(t^{\alpha },x_{2}^{\alpha },v_{1}(t^{\alpha },x_{1}^{\alpha }),p_{1}^{\alpha },-X_{2}^{\alpha })- F^*(t^{\alpha },x_{1}^{\alpha },v_{1}(t^{\alpha },x_{1}^{\alpha }),p_{1}^{\alpha },X_{1}^{\alpha }). \end{aligned}$$

We claim that

$$\begin{aligned} I_{1}^{\alpha }\ge 0\ \text { as } \ \alpha \rightarrow \infty , \end{aligned}$$
(A.4)

and

$$\begin{aligned} I_{2}^{\alpha }\ge 0\ \text {as} \ \alpha \rightarrow \infty , \end{aligned}$$
(A.5)

whose proof will be given in step 2 and step 3, respectively. Then, we induce a contradiction. Consequently, we get that \(v^1\le v^2.\) The proof is complete.

step2. The proof of (A.4).

Note that \(|G(A)|\le \frac{1}{2}\bar{\sigma }^{2}\sqrt{d}|A|, \forall A\in \mathbb {S}_{d}.\) For large enough \(\alpha ,\) any \(v\ge \tilde{v}\), by the definition of \(F^*\), assumptions (A2), (A3) and Remark 4.1, we can get

$$\begin{aligned}&F^*(t^{\alpha },x_{2}^{\alpha },v,p_{1}^{\alpha },-X_{2}^{\alpha })-F^*(t^{\alpha },x_{2}^{\alpha },\tilde{v},p_{1}^{\alpha },-X_{2}^{\alpha })\\&\quad \le C[(v-\tilde{v})+\rho (C(v-\tilde{v}))+\psi (C(v-\tilde{v}))]\\&\quad \le C+C(v-\tilde{v}), \end{aligned}$$

where the constant C is only dependent on \(L,K,\bar{\sigma },d,T.\) Then, we have

$$\begin{aligned}&-\lambda v+F^*(t^{\alpha },x_{2}^{\alpha },v,p_{1}^{\alpha },-X_{2}^{\alpha })+\lambda \tilde{v}-F^*(t^{\alpha },x_{2}^{\alpha },\tilde{v},p_{1}^{\alpha },-X_{2}^{\alpha })\\&\quad \le -(\lambda -C)(v-\tilde{v})+C. \end{aligned}$$

By virtue of the boundness of the viscosity solution v and \(\tilde{v}\), we can choose \(\lambda \) large enough, so that the function

$$\begin{aligned} v\rightarrow -\lambda v+F^*(t^{\alpha },x_{2}^{\alpha },v,p_{1}^{\alpha },-X_{2}^{\alpha })\ \text {is non-increasing.} \end{aligned}$$

In view of \(-v_{2}(t^{\alpha },x_{2}^{\alpha })<v_{1}(t^{\alpha },x_{1}^{\alpha })\), (A.4) is proved.

step3. The proof of (A.5).

Note that \(G(A)\le \frac{1}{2}\overline{\sigma }^2\mathrm {tr}[A]\) for any \(A\ge 0\). By virtue of (A.3) and assumption (A2), we can get

$$\begin{aligned}&G(\sigma ^{T}(t^{\alpha },x_{1}^{\alpha })X_{1}^{\alpha }\sigma (t^{\alpha },x_{1}^{\alpha })-\sigma ^{T}(t^{\alpha },x_{2}^{\alpha })(-X_{2}^{\alpha })\sigma (t^{\alpha },x_{2}^{\alpha }))\\&\quad =G\left( \left( \begin{array}[c]{cccc} \sigma ^{T}(t^{\alpha },x_{1}^{\alpha }) &{} \sigma ^{T}(t^{\alpha },x_{2}^{\alpha })\\ \end{array} \right) \left( \begin{array}[c]{cccc} X_1^{\alpha } &{} 0\\ 0 &{} X_2^{\alpha } \end{array} \right) \left( \begin{array}[c]{cccc} \sigma (t^{\alpha },x_{1}^{\alpha }) \\ \sigma (t^{\alpha },x_{2}^{\alpha }) \end{array} \right) \right) \\&\quad \le 3\alpha G\left( \left( \begin{array}[c]{cccc} \sigma ^{T}(t^{\alpha },x_{1}^{\alpha }) &{} \sigma ^{T}(t^{\alpha },x_{2}^{\alpha })\\ \end{array} \right) \left( \begin{array}[c]{cccc} I_{n} &{} -I_{n}\\ -I_{n} &{} I_{n} \end{array} \right) \left( \begin{array}[c]{cccc} \sigma (t^{\alpha },x_{1}^{\alpha }) \\ \sigma (t^{\alpha },x_{2}^{\alpha }) \end{array} \right) \right) \\&\quad =3\alpha G\left( (\sigma (t^{\alpha },x_{1}^{\alpha })-\sigma (t^{\alpha },x_{2}^{\alpha }))^{T}(\sigma (t^{\alpha },x_{1}^{\alpha })-\sigma (t^{\alpha },x_{2}^{\alpha })\right) \\&\quad \le \frac{3}{2}\bar{\sigma }^{2}\alpha |\sigma (t^{\alpha },x_{1}^{\alpha })-\sigma (t^{\alpha },x_{2}^{\alpha })|^{2}\\&\quad \le \frac{3}{2}\bar{\sigma }^{2}L^{2}\alpha |x_{1}^{\alpha }-x_{2}^{\alpha }|^{2}. \end{aligned}$$

Note that \(|G(A)|\le \frac{1}{2}\bar{\sigma }^{2}\sqrt{d}|A|, \forall A\in \mathbb {S}_{d}.\) According to the definition of \(F^*\), assumptions (A2), (A3) and Remark 4.1, we can obtain

$$\begin{aligned}&I_{2}^{\alpha }\ge -C[|x_{1}^{\alpha }-x_{2}^{\alpha }|+|p_{1}^{\alpha }||x_{1}^{\alpha }-x_{2}^{\alpha }|+|v_{1}(t^{\alpha },x_{1}^{\alpha })||x_{1}^{\alpha }-x_{2}^{\alpha }|\\&\quad +\rho (C|v_{1}(t^{\alpha },x_{1}^{\alpha })||x_{1}^{\alpha }-x_{2}^{\alpha }|) +\psi (C(|p_{1}^{\alpha }||x_{1}^{\alpha }-x_{2}^{\alpha }|+|v_{1}(t^{\alpha },x_{1}^{\alpha })||x_{1}^{\alpha }-x_{2}^{\alpha }|))\\&\quad +\alpha |x_{1}^{\alpha }-x_{2}^{\alpha }|^{2}], \end{aligned}$$

where the constant C is only dependent on \(L,K,\bar{\sigma },d,T.\) Note that \( \lim _{\alpha \rightarrow \infty }|x_{1}^{\alpha }-x_{2}^{\alpha }|=0, \) \(\lim _{\alpha \rightarrow \infty }\) \(|v_{1}(t^\alpha ,x^\alpha )||x_{1}^{\alpha }-x_{2}^{\alpha }|=0,\) \(\lim _{\alpha \rightarrow \infty }|p_{1}^{\alpha }||x_{1}^{\alpha }-x_{2}^{\alpha }|=0, \lim _{\alpha \rightarrow \infty }\alpha |x_{1}^{\alpha }-x_{2}^{\alpha }|^{2}=0\) and \(\rho (\cdot )\) and \(\psi (\cdot )\) are continuous functions. Letting \(\alpha \rightarrow \infty \), we can get \(I_{2}^{\alpha }\ge 0.\) (A.5) is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S. Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (yz). J Theor Probab 35, 370–409 (2022). https://doi.org/10.1007/s10959-020-01057-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01057-2

Keywords

Mathematics Subject Classification (2020)

Navigation