Skip to main content
Log in

Quaternionic Brownian Windings

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We define and study the three-dimensional windings along Brownian paths in the quaternionic Euclidean, projective and hyperbolic spaces. In particular, the asymptotic laws of these windings are shown to be Gaussian for the flat and spherical geometries while the hyperbolic winding exhibits a different long time-behavior. The corresponding asymptotic law seems to be new and is related to the Cauchy relativistic distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baudoin, F., Wang, J.: Stochastic areas, winding numbers and Hopf fibrations. Probab. Theory Related Fields 169(3–4), 977–1005 (2017)

    Article  MathSciNet  Google Scholar 

  2. Byczkowski, M.T., Malecki, J., Ryznar, M.: Bessel potentials, Hitting distributions, and Green functions. Trans. AMS 361(9), 4871–4900 (2009)

    Article  MathSciNet  Google Scholar 

  3. Chen, K.T.: Iterated integrals and exponential homomorphisms. Proc. London Math. Soc. 4(3), 502–512 (1954)

    Article  MathSciNet  Google Scholar 

  4. Demni, N.: Generalized Stochastic areas and windings arising from Anti-de Sitter and Hopf fibrations. Submitted

  5. Pauwels, E.J., Rogers, L.C.G.: Skew-product decompositions of Brownian motions. Contemp. Math. 73, 237–262 (1988)

    Article  MathSciNet  Google Scholar 

  6. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Third Edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

    Google Scholar 

  7. Volchkov, V., Volchkov, V.: Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg group. Springer Science & Business Media, Berlin (2009)

    Book  Google Scholar 

  8. Watanabe, S.: Asymptotic windings of Brownian motion paths on Riemann surfaces. Acta Appl. Math. 63, 441–464 (2000)

    Article  MathSciNet  Google Scholar 

  9. Yor, M.: Remarques sur une formule de Paul Lévy. Sém. Proba. XIV. (Lecture Notes in Mathematics, vol. 784.) Springer, Berlin, pp. 343-346 (1980)

  10. Yor, M.: Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53(1), 71–95 (1980)

    Article  MathSciNet  Google Scholar 

  11. Yor, M.: Some Aspects of Brownian Motion. Part I. Some Special Functionals. Lectures in Mathematics ETH Zürich. Birkhuser Verlag, Basel (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author supported in part by the Simons Foundation and NSF Grant DMS-1901315.

Author supported by the NSF Grant DMS-1855523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudoin, F., Demni, N. & Wang, J. Quaternionic Brownian Windings. J Theor Probab 34, 2368–2385 (2021). https://doi.org/10.1007/s10959-020-01034-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01034-9

Keywords

Mathematics Subject Classification

Navigation