Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory, vol. 371. American Mathematical Society, Providence (2010)
MATH
Google Scholar
Benoist, S., Hongler, C.: The Scaling Limit of Critical Ising Interfaces is CLE(3). arXiv:1604.06975 (2016)
Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Rel. Fields 153(3–4), 511–542 (2012)
MATH
Google Scholar
Bertoin, J.: Lévy Processes, vol. 121. Cambridge University Press, Cambridge (1996)
MATH
Google Scholar
Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of Ising interfaces to Schramm’s SLE curves. Compt. R. Math. 352(2), 157–161 (2014)
MathSciNet
MATH
Google Scholar
Chelkak, D., Duminil-Copin, H., Hongler, C.: Crossing probabilities in topological rectangles for the critical planar FK-Ising model. Electron. J. Probab. 21(5), 28 (2016)
MathSciNet
MATH
Google Scholar
Chelkak, D.: Robust discrete complex analysis: a toolbox. Ann. Probab. 44(1), 628–683 (2016)
MathSciNet
MATH
Google Scholar
Chelkak, D.: 2D Ising model: correlation functions at criticality via Riemann-type boundary value problems. In: European Congress of Mathematics, Berlin, 18–22 July 2016, pp. 235–256. European Mathematical Society, Zurich (2018)
Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. of Math. (2) 181(3), 1087–1138 (2015)
MathSciNet
MATH
Google Scholar
Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1–38 (2006)
MathSciNet
MATH
Google Scholar
Camia, F., Newman, C.M.: Critical percolation exploration path and \({\rm SLE}_6\): a proof of convergence. Probab. Theory Rel. Fields 139(3–4), 473–519 (2007)
MATH
Google Scholar
Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)
MathSciNet
MATH
Google Scholar
Duminil-Copin, H.: Parafermionic observables and their applications to planar statistical physics models. Ensaios Matematicos 25, 1–371 (2013)
MathSciNet
MATH
Google Scholar
Duminil-Copin, H., Sidoravicius, V., Tassion, V.: Continuity of the phase transition for planar random-cluster and Potts models with \(1 \le q \le 4\). Commun. Math. Phys. 349(1), 47–107 (2017)
MathSciNet
MATH
Google Scholar
Garban, C., Wu, H.: Dust Analysis in FK-Ising Percolation and Convergence to SLE (16/3, 16/3–6) (Unpublished manuscript). http://math.univ-lyon1.fr/~garban/Fichiers/FKIsing_onearm_manuscript.pdf
Goggin, E.M.: Convergence in distribution of conditional expectations. Ann. Probab. 22(2), 1097–1114 (1994)
MathSciNet
MATH
Google Scholar
Kemppainen, A., Smirnov, S.: Conformal invariance of boundary touching loops of FK Ising model. arXiv:1509.08858 (2015)
Kemppainen, A., Smirnov, S.: Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. arXiv:1609.08527 (2016)
Kemppainen, A., Smirnov, S.: Random curves, scaling limits and Loewner evolutions. Ann. Probab. 45(2), 698–779 (2017)
MathSciNet
MATH
Google Scholar
Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)
MATH
Google Scholar
Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2D percolation. Electron. J. Probab. 7(2), 13 (2002). (electronic)
MathSciNet
MATH
Google Scholar
Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)
MathSciNet
MATH
Google Scholar
Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)
MathSciNet
MATH
Google Scholar
McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)
MATH
Google Scholar
Miller, J., Sheffield, S.: Imaginary geometry I: interacting SLEs. Probab. Theory Rel. Fields 164(3–4), 553–705 (2016)
MathSciNet
MATH
Google Scholar
Miller, J., Sheffield, S.: Imaginary geometry II: reversibility of \(\operatorname{SLE}_\kappa (\rho _1;\rho _2)\) for \(\kappa \in (0,4)\). Ann. Probab. 44(3), 1647–1722 (2016)
MathSciNet
MATH
Google Scholar
Newman, M.H.A.: Elements of the Topology of Plane Sets of Points, 2nd edn. Dover Publications Inc, New York (1992)
MATH
Google Scholar
Pommerenke, C.: Boundary behaviour of conformal maps, vol. 299. Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin (1992)
MATH
Google Scholar
Revuz, D., Yor, M.: Continuous martingales and Brownian motion, vol. 293, 2nd edn. Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin (1994)
MATH
Google Scholar
Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)
MathSciNet
MATH
Google Scholar
Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)
MathSciNet
MATH
Google Scholar
Schramm, O., Sheffield, S., Wilson, D.B.: Conformal radii for conformal loop ensembles. Commun. Math. Phys. 288(1), 43–53 (2009)
MathSciNet
MATH
Google Scholar
Schramm, O., Wilson, D.B.: SLE coordinate changes. N. Y. J. Math. 11, 659–669 (2005). (electronic)
MathSciNet
MATH
Google Scholar
Sheffield, S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79–129 (2009)
MathSciNet
MATH
Google Scholar
Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)
MathSciNet
MATH
Google Scholar
Smirnov, S.: Conformal invariance in random cluster models. I. Holmorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)
MathSciNet
MATH
Google Scholar
Smirnov, S., Werner, W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8(5–6), 729–744 (2001)
MathSciNet
MATH
Google Scholar
Werner, W.: Lectures on two-dimensional critical percolation (2007)