Skip to main content
Log in

Rate of Convergence for the Weighted Hermite Variations of the Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we obtain a rate of convergence in the central limit theorem for high order weighted Hermite variations of the fractional Brownian motion. The proof is based on the techniques of Malliavin calculus and the quantitative stable limit theorems proved by Nourdin et al. (Ann Probab 44:1–41, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 335–368 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008)

    Article  MathSciNet  Google Scholar 

  3. Binotto, G., Nourdin, I., Nualart, D.: Weak symmetric integrals with respect to the fractional Brownian motion (2016). Ann. Probab. 46(4), 2243–2267 (2018)

    Article  MathSciNet  Google Scholar 

  4. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20(2), 151–173 (1976)

    Article  MathSciNet  Google Scholar 

  5. Breuer, P., Major, P.: Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13, 425–441 (1983)

    Article  MathSciNet  Google Scholar 

  6. Gradinaru, M., Nourdin, I.: Milstein’s type schemes for fractional SDEs. Ann. Inst. H. Poincaré Probab. Statist. 45(4), 1085–1098 (2009)

    Article  MathSciNet  Google Scholar 

  7. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  Google Scholar 

  8. Mishkov, R.: Generalization of the formula of Faa di Bruno for a composite function with a vector argument. Int. J. Math. Math. Sci. 24(7), 481–491 (2000)

    Article  MathSciNet  Google Scholar 

  9. Neuenkirch, A., Nourdin, I.: Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theor. Probab. 20, 871–899 (2007)

    Article  MathSciNet  Google Scholar 

  10. Nourdin, I.: Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion. Ann. Probab. 36(6), 2159–2175 (2008)

    Article  MathSciNet  Google Scholar 

  11. Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Springer, Berlin (2012)

    Book  Google Scholar 

  12. Nourdin, I., Nualart, D.: Central limit theorems for multiple Skorohod integrals. J. Theor. Probab. 23(1), 39–64 (2010)

    Article  Google Scholar 

  13. Nourdin, I., Nualart, D., Peccati, G.: Quantitative stable limit theorems on the Wiener space. Ann. Probab. 44(1), 1–41 (2016)

    Article  MathSciNet  Google Scholar 

  14. Nourdin, I., Nualart, D., Tudor, C.A.: Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré 46(4), 1055–1079 (2010)

    Article  MathSciNet  Google Scholar 

  15. Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  16. Nourdin, I., Réveillac, A.: Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case \(H=1/4\). Ann. Probab. 37(6), 2200–2230 (2009)

    Article  MathSciNet  Google Scholar 

  17. Nourdin, I., Réveillac, A., Swanson, J.: The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. 15, 2117–2162 (2010)

    Article  MathSciNet  Google Scholar 

  18. Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Nualart, D., Zhou. H.: Total variation estimates in the Breuer-Major theorem. Preprint, arXiv:1807.09707

Download references

Acknowledgements

We would like to thank an anonymous referee for his/her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of D. Nualart is supported by the NSF Grant DMS 1811181.

Appendix

Appendix

Here we prove a result we need in the proof of Theorem 1.1. Recall the notation \(D_{k/n} F = \langle DF, \delta _{k/n}\rangle _{\mathfrak {H}}\) where \(\delta _{k/n} =\mathbb {1}_{[k/n,(k+1)/n]}\).

Lemma 4.1

For any integers \(\ell , M, a,b,c\) such that \(M\ge 0\), \(0\le c\le q\), \(0\le a\le q-c\), \(0\le b\le c\) and any real number \(p>1\),there exists a constant C depending on q, M, p, and the Hurst parameter H such that

$$\begin{aligned} \left\| \underbrace{D_{k/n}\cdots D_{k/n}}_{a\,\mathrm{times}} \left( u_n \otimes _{b} \delta _{k/n}^{\otimes c} \right) \right\| _{M,p} \le C\Vert f\Vert _{M+a,p}n^{\kappa (a,b,c,H)}, \end{aligned}$$

where

$$\begin{aligned}&\kappa (a,b,c,H) :={\left\{ \begin{array}{ll} {-1/2-H(2a+c)} &{} b>0, H\le 1/2\\ -1/2-a-H(c-b)+ (-Hb)\\ \vee (q(H-1)+1-b) &{} b>0, H>1/2\\ {-a(2H\wedge 1)-Hc} &{} b=0 \end{array}\right. }. \end{aligned}$$

Proof

For \(0\le m\le M\), let

$$\begin{aligned} A_m&:=E\left[ \left\| D^m\left( \underbrace{D_{k/n}\cdots D_{k/n}}_{a\,\mathrm{times}} \left( u_n \otimes _{b} \delta _{k/n}^{\otimes c} \right) \right) \right\| _{\mathfrak {H}^{\otimes (m+q-2b+c)}}^p\right] ^{1/p}\\&=n^{qH-1/2}E\left[ \left\| \sum _{j=0}^{n-1} f^{(m+a)}(B_{j/n}) \alpha _{k,j/n}^{a} \beta _{j,k}^b\delta _{k/n}^{\otimes (c-b)} \delta _{j/n}^{\otimes (q-b)} {\otimes } \varepsilon _{j/n}^{\otimes m} \right\| _{\mathfrak {H}^{\otimes (m+q-2b+c)}}^p\right] ^{1/p}. \end{aligned}$$

Taking the norm in \(\mathfrak {H}^{m+q-2b+c}\), we have

$$\begin{aligned} A_m\le & {} Cn^{qH-1/2} \Vert f\Vert _{m+a,p}\\&\left\{ \sum _{j,j'=0}^{n-1} |\alpha _{k,j/n}|^a |\alpha _{k,j'/n}|^a |\beta _{j,k}|^b| \beta _{j',k}|^b n^{-2H(c-b)} |\beta _{j,j'}|^{q-b} \right\} ^{1/2}. \end{aligned}$$

We consider three different cases:

Case 1 Suppose that \(0<b<q\). Applying Lemma 2.4 to \(\sum _{j,j'=0}^{n-1}|\beta _{j,k}|^b|\beta _{j',k}|^b |\beta _{j,j'}|^{q-b}\) and Lemma 2.1(a) to each of the \(\alpha \) terms, we have

$$\begin{aligned} A_m&\le C n^{qH-1/2} \Vert f\Vert _{m+a,p} \left( n^{-2a(2H\wedge 1)}n^{-2H(c-b)} n^{(-2H(q+b))\vee (2-2(q+b))}\right) ^{1/2}\\&=C n^{qH-1/2} \Vert f\Vert _{m+a,p} n^{-a(2H\wedge 1)} n^{-H(c-b)} n^{(-H(q+b))\vee (1-(q+b))}. \end{aligned}$$

When \(H\le 1/2\), \(q+b\ge 2\ge 1/(1-H)\), so \(-H(q+b) \ge 1-(q+b)\), and we have

$$\begin{aligned} A_m \le C n^{qH-1/2} \Vert f\Vert _{m+a,p} n^{-H(q+2a+c)}. \end{aligned}$$

When \(H>1/2\),

$$\begin{aligned} A_m&\le Cn^{qH-1/2} \Vert f\Vert _{m+a,p}n^{-a} n^{-H(c-b)} n^{(-H(q+b))\vee (1-(q+b))} \\&=Cn^{qH-1/2} \Vert f\Vert _{m+a,p}n^{-a-H(c-b)}n^{(-H(q+b))\vee (1-(q+b))}\\&=C \Vert f\Vert _{m+a,p}n^{-a-1/2-H(c-b)}n^{(-Hb)\vee (q(H-1)+1-b)}. \end{aligned}$$

Case 2 Suppose that \(b=q\). In this case, \(c=q\) and \(a=0\) and, applying Lemma 2.2(a),

$$\begin{aligned} A_m&\le C n^{qH-1/2} \Vert f\Vert _{m,p} \left[ \sum _{j,j'=0}^{n-1} |\beta _{j,k}|^q|\beta _{j',k}|^q\right] ^{1/2}\\&= Cn^{qH-1/2} \Vert f\Vert _{m,p} \sum _{j=0}^{n-1} |\beta _{j,k}|^q\\&\le C \Vert f\Vert _{m,p}n^{qH-1/2} n^{(-2qH)\vee (1-2q)}. \end{aligned}$$

Note that \(-2qH = (-2qH)\vee (1-2q)\). Thus, this estimate coincides with the estimate in case 1 when \(b=c=q\) and \(a=0\).

Case 3 Suppose that \(b=0\). Applying Lemma 2.2(b) to \(\sum _{j,j'=0}^{n-1} |\beta _{j,j'}|^q\) and Lemma 2.1(a) to each of the \(\alpha \) terms,

$$\begin{aligned} A_m&\le C n^{qH-1/2} \Vert f\Vert _{m+a,p} n^{-a(2H\wedge 1)} n^{-Hc} n^{(1/2-qH)\vee (1-q)}\\&= C n^{qH-1/2} \Vert f\Vert _{m+a,p}n^{-a(2H\wedge 1)}n^{-Hc} n^{1/2-qH} \\&\le C \Vert f\Vert _{m+a,p}n^{-a(2H\wedge 1)-Hc}. \end{aligned}$$

This concludes the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Nualart, D. Rate of Convergence for the Weighted Hermite Variations of the Fractional Brownian Motion. J Theor Probab 33, 1919–1947 (2020). https://doi.org/10.1007/s10959-019-00940-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00940-x

Keywords

Mathematics Subject Classification (2010)

Navigation