Skip to main content
Log in

Random Conformal Welding for Finitely Connected Regions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Given a finitely connected region \(\Omega \) of the Riemann sphere whose complement consists of m mutually disjoint closed disks \({\bar{U}}_j\), the random homeomorphism \(h_j\) on the boundary component \(\partial U_j\) is constructed using the exponential Gaussian free field. The existence and uniqueness of random conformal welding of \(\Omega \) with \(h_j\) is established by investigating a non-uniformly elliptic Beltrami equation with a random complex dilatation. This generalizes the result of Astala, Jones, Kupiainen and Saksman to multiply connected domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Astala, K., Jones, P., Kupiainen, A., Saksman, E.: Random conformal weldings. Acta Math. 207, 203–254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beurling, A., Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, C.J.: Conformal welding and Koebe’s theorem. Ann. Math. 166, 613–656 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camia, F., Newman, C.M.: Critical percolation exploration path and \(SLE_6\): a proof of convergence. Prob. Theor. Relat. Fields 139, 473–519 (2007)

    Article  MATH  Google Scholar 

  6. Doyon, B.: Factorisation of conformal maps on finitely connected domains. Preprint (2011). arXiv:1107.0582v1 [math.cv]

  7. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  8. Hamilton, D.H.: Conformal welding. In: Kühnau, R. (ed.) The Handbook of Geometric Function Theory. North Holland, Amsterdam (2002)

    Google Scholar 

  9. Jones, P.W., Smirnov, S.K.: Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat. 38, 263–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kager, W., Nienhuis, B.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115, 1149–1229 (2004)

    Article  MATH  Google Scholar 

  11. Lawler, G.F.: Conformal Invariant Processes in the Plane. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  12. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawler, G.F., Sheffield, S.: A natural parametrization for the Schramm–Loewner evolution. Ann. Probab. 39, 1896–1937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawler, G.F., Zhou, W.: SLE curves and natural parametrization. Ann. Probab. 41, 1556–1584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lehto, O.: Homeomorphisms with a Given Dilatation. Lecture Notes in Mathematics, vol. 118, pp. 58–73. Springer, Berlin (1970)

    Google Scholar 

  16. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  17. Marshall, D.E.: Conformal welding for finitely connected regions. Comput. Methods Funct. Theory 11, 655–669 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Radnell, D., Schippers, E.: Quasisymmetric sewing in rigged Teichmüller space. Commun. Contemp. Math. 8, 481–534 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 883–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schramm, O., Sheffield, S.: The harmonic explorer and its convergence to SLE(4). Ann. Probab. 33, 2127–2148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202, 21–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Preprint (2010). arXiv:1012.4797 [math.pr]

  25. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333, 239–244 (2001a)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smirnov, S.: Critical percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit. (long version of [25]) (2001b). arXiv:0909.4499

  27. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tecu, N.: Random conformal weldings at criticality. Preprint (2012). arXiv:1205.3189v1 [math.cv]

  29. Williams, G.B.: Discrete conformal welding. Indiana Univ. Math. J. 53, 765–804 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank one referee for his/her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Zhou.

Additional information

Shi-Yi Lan was partially supported by the NSF of China (11661011) and NSF of Guangxi (2016GXNSFAA380099). Wang Zhou was partially supported by a Grant R-155-000-192-114 at the National University of Singapore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, SY., Zhou, W. Random Conformal Welding for Finitely Connected Regions. J Theor Probab 32, 659–683 (2019). https://doi.org/10.1007/s10959-018-0874-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0874-5

Keywords

Mathematics Subject Classification (2010)

Navigation