Advertisement

Compactness and Density Estimates for Weighted Fractional Heat Semigroups

  • Jian Wang
Article
  • 56 Downloads

Abstract

We prove that the operator \(L_0=-(1+|x|)^\beta (-\Delta )^{\alpha /2}\) with \(\alpha \in (0,2)\), \(d>\alpha \) and \(\beta \ge 0\) generates a compact semigroup or resolvent on \(L^2(\mathbb {R}^d;(1+|x|)^{-\beta }\,\mathrm{d}x)\), if and only if \(\beta >\alpha \). When \(\beta >\alpha \), we obtain two-sided asymptotic estimates for high-order eigenvalues, and sharp bounds for the corresponding heat kernel.

Keywords

Weighted fractional Laplacian operator Compactness Heat kernel (Intrinsic) Super Poincaré inequality 

Mathematics Subject Classification (2010)

60G51 60G52 60J25 60J75 

Notes

Acknowledgements

The author would like to think the referee for helpful comments and careful corrections. The research is supported by National Natural Science Foundation of China (No. 11522106), the Fok Ying Tung Education Foundation (No. 151002) and the Program for Probability and Statistics: Theory and Application (No. IRTL1704).

References

  1. 1.
    Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361, 1963–1999 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bakry, D., Bolley, F., Gentil, I., Maheux, P.: Weighted Nash inequalities. Rev. Mat. Iberoam. 28, 879–906 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bogdan, K., Dyda, B., Kim, P.: Hardy inequalities and non-explosion results for semigroups. Potential Anal. 44, 229–247 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, X., Wang, J.: Functional inequalities for nonlocal Dirichlet forms with finite range jumps or large jumps. Stoch. Process. Appl. 124, 123–153 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  6. 6.
    Chen, Z.-Q., Kim, P., Song, R.: Heat kernel estimates for Dirichlet fractional Laplacian. J. Eur. Math. Soc. (JEMS) 124, 1307–1329 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Z.-Q., Wang, J.: Ergodicity for time-changed symmetric stable processes. Stoch. Process. Appl. 124, 2799–2823 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng, S.-Y., Li, P.: Heat kernel estimates and lower bound of eigenvalues. Comm. Math. Helvetici 56, 327–338 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davies, E.B., Simon, B.: Ultracontractivity and heat kernels for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dyda, B.: A fractional order Hardy inequality. Illinois J. Math. 48, 575–588 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Studies in Mathematics, vol. 19, 2nd edn. de Gruyter, Berlin (2011)Google Scholar
  12. 12.
    Grigor’yan, A.: Heat kernels on weighted manifolds and applications. Contemp. Math. 398, 93–191 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jacob, N., Wang, F.-Y.: Higher order eigenvalues for non-local Schrödinger operators. Commun. Pure Appl. Anal. 17, 191–208 (2018)zbMATHGoogle Scholar
  14. 14.
    Kim, K.-Y., Kim, P.: Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in \(C^{1,\eta }\) open sets. Stoch. Process. Their Appl. 124, 3055–3083 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kumar, R., Popovic, L.: Large deviations for multi-scale jump-diffusion processes. Stoch. Process. Appl. 127, 1297–1320 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Luo, D., Wang, J.: Hölder continuity of semigroups for time changed symmetric stable processes. Front. Math. China 11, 109–121 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Metafune, G., Spina, C.: Heat kernels estimates for some elliptic operators with unbounded diffusion coefficients. Discrete Contin. Dyn. Syst. 32, 2285–2299 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Metafune, G., Spina, C.: Elliptic operators with unbounded diffusion coefficients in \(L^p\) spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, 303–340 (2012)zbMATHGoogle Scholar
  19. 19.
    Metafune, G., Spina, C.: Heat kernels estimates for an operator with unbounded diffusion coefficients in \(\mathbb{R}\) and \(\mathbb{R}^2\). Semigroup Forum 86, 67–82 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Metafune, G., Pallara, D., Wecker, M.: Feller semigroups on \(\mathbb{R}^N\). Semigroup Forum 65, 159–205 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nguyen, H.-M., Squassina, M.: Fractional Caffarelli–Kohn–Nirenberg inequalities. J. Funct. Anal. 274, 2661–2672 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Marcel Dekker Inc., New York (1991)zbMATHGoogle Scholar
  23. 23.
    Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York (1974)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, F.-Y.: Functional inequalities for empty spectrum estimates. J. Funct. Anal. 170, 219–245 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, F.-Y.: Functional inequalities and spectrum estimates: the finitie measure case. J. Funct. Anal. 2002, 288–310 (1994)Google Scholar
  26. 26.
    Wang, F.-Y.: Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing (2005)Google Scholar
  27. 27.
    Wang, F.-Y.: A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22, 1–15 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Informatics & Fujian Provincial Key Laboratory of Mathematical Analysis and its Applications (FJKLMAA)Fujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations