Journal of Theoretical Probability

, Volume 32, Issue 2, pp 934–949 | Cite as

Small Ball Probabilities for Certain Gaussian Random Fields

  • Leonid V. RozovskyEmail author


Our main goal is to study the behavior of the tail probabilities \({\mathbf{P}}(V^2<r)\) as \(r\rightarrow 0\), where \(V^2\) is defined by the following double sum
$$\begin{aligned} V^2 =\pi ^{-4}\,\sum \limits _{i,j\ge 1} \Big ((i+b)\,(j + {\delta })\Big )^{-2}\,\xi _{ij}^2, \end{aligned}$$
where \( \{\xi _{ij}\} \) are independent standard normal random variables, and b and \({\delta }\) are constants: \(b>-1\) and \(\delta >-1\).


Small deviations Karhunen–Loève expansion Gaussian random field Tensor product \( L_2\)-norm 

Mathematics Subject Classification (2010)

60G50 60G15 



The author is indebted to professors M. A. Lifshits, Ya. Yu. Nikitin and A. I. Nazarov (Saint Petersburg State University) for helpful discussions, and an anonymous referee for valuable comments.


  1. 1.
    Karol’, A., Nazarov, A., Nikitin, Y.: Small ball probabilities for Gaussian random fields and tensor products of compact operators. Trans. AMS 360(N3), 1443–1447 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Karol’, A., Nazarov, A.: Small ball probabilities for smooth Gaussian fields and tensor products of compact operators. Math. Nachr. 287, 595–609 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    van der Vaart, A., Wellner, J.A.: Weak Convergence and Empirical Processes with Applications to Statistics, Springer Series in Statistics. Springer, New York (1986)Google Scholar
  4. 4.
    Li, W. V., Shao, Q. M.: Gaussian processes: inequalities, small ball probabilities and applications. In: Rao, C.R., Shanbhag, D. (eds.) Stochastic Processes: Theory and Methods, Handbook of Statistics, vol. 19, pp. 533–597 (2001)Google Scholar
  5. 5.
    Lifshits, M.A.: Asymptotic behavior of small ball probabilities, probability theory and mathematical statistics. In: B.Grigelionis et al. (eds.) Proceedings of the VII International Vilnius Conference (1998), VSP/TEV, pp. 453-468 (1999)Google Scholar
  6. 6.
    Small Deviations for Stochastic Processes and Related Topics.
  7. 7.
    Csáki, E.: On small values of the square integral of a multiparameter Wiener process. In: Statistics and Probability, Proceedings of the 3rd Pannonian Symposium on Mathematical Statistics. D. Reidel, Boston, p. 19–26 (1982)Google Scholar
  8. 8.
    Fill, J.A., Torcaso, F.: Asymptotic analysis via Mellin transforms for small deviations in L2-norm of integrated Brownian sheets. Probab. Theory Relat. Fields 130, 259–288 (2003)zbMATHGoogle Scholar
  9. 9.
    Nazarov, A.I., Nikitin, Y.Y.: Logarithmic L2-small ball asymptotics for some fractional Gaussian processes. Theory Probab. Appl. 49, 645–658 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sytaya, G.N.: On some asymptotic representations of the Gaussian measure in a Hilbert space. Theory Stoch. Process. 2, 93–104 (1974). (Russian)Google Scholar
  11. 11.
    Gradshteyn, I. S., Ryzhik, I. M.: Tables of integrals, sums, series and products, 5th ed. Moscow, Nauka, 1971 (in Russian). English transl.: Table of integrals, series, and products. Corr. and enl. ed. by Alan Je®rey. New York London Toronto: Academic Press (Harcourt Brace Jovanovich, Publishers) (1980)Google Scholar
  12. 12.
    Rozovsky, L.V.: On Gaussian measure of balls in a Hilbert space. Theory Probab. Appl. 53(2), 357–364 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Comtet, L.: Advanced Combinatorics. Reidel Pub., Boston (1974)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rozovsky, L.V.: Small deviation probabilities for weighted sums of independent random variables with a common distribution that can decrease at zero fast enough. Stat. Probab. Lett. 117, 196–200 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Comtet, L.: Inversion de \(y^{\alpha }\, e^y\) et \(y\,\log ^{\alpha }{y}\) au moyen des nombres de Stirling. Comptes Rend. de l’Academie Sci. Ser. Math. 270, 1085–1088 (1970)zbMATHGoogle Scholar
  16. 16.
    Petrov, V.V.: Sums of Independent Random Variables. Nauka, Moscow (1972). (in Russian)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsSt. Petersburg Chemical Pharmaceutical AcademySt. PetersburgRussia

Personalised recommendations