Skip to main content
Log in

Exponential Extinction Time of the Contact Process on Rank-One Inhomogeneous Random Graphs

Journal of Theoretical Probability Aims and scope Submit manuscript

Cite this article

Abstract

We show that the contact process on the rank-one inhomogeneous random graphs and Erdos–Rényi graphs with mean degree large enough survives a time exponential in the size of these graphs for any positive infection rate. In addition, a metastable result for the extinction time is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: The longest path in a random graph. Combinatorica 1, 1–12 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, N., Borgs, C., Chayes, J.T., Saberi, A.: On the spread of viruses on the internet. In: Proceedings of the Sixteenth Annual ACM-SIAM symposium on discrete algorithms, pp. 301–310 (2005)

  3. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Algorithms. 31, 3–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Cranston, M., Mountford, T., Mourrat, J.-C., Valesin, D.: The contact process on finite homogeneous trees revisited. ALEA Lat. Am. J. Probab. Math. Stat. 11, 385–408 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Chatterjee, S., Durrett, R.: Contact process on random graphs with degree power law distribution have critical value zero. Ann. Probab. 37, 2332–2356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Can, V.H., Schapira, B.: Metastability for the contact process on the configuration model with infinite mean degree. Electron. J. Probab. 20, 1–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Can, V.H.: Metastability for the contact process on the preferential attachment graph, accepted for publication in Internet Mathematics. doi:10.24166/im.08.2017

  9. Can, V.H.: Super-exponential extinction time of the contact process on random geometric graphs. Comb. Probab. Comput. (2017). doi:10.1017/S0963548317000372

    Google Scholar 

  10. Harris, T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. van der Hofstad, R.: Random graphs and complex networks. http://www.win.tue.nl/~rhofstad/NotesRGCN.html

  12. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren de Mathematischen Wissenschaften, vol. 324. Springer, New York (1999)

    Book  MATH  Google Scholar 

  13. Lalley, S., Su, W.: Contact processes on random regular graphs. Ann. Appl. Probab. 27, 2061–2097 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mountford, T., Mourrat, J.-C., Valesin, D., Yao, Q.: Exponential extinction time of the contact process on finite graphs. Stoch. Process. Appl. 126(7), 1974–2013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mountford, T., Valesin, D., Yao, Q.: Metastable densities for contact processes on random graphs. Electron. J. Probab. 18, 1–36 (2013)

    Article  MATH  Google Scholar 

  16. Mourrat, J.-C., Valesin, D.: Phase transition of the contact process on random regular graphs. Electron. J. Probab. 21(31), 1–17 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Ménard, L., Singh, A.: Percolation by cumulative merging and phase transition for the contact process on random graphs. Ann. Sci. Éc. Norm. Supér. 49, 1189–1238 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pemantle, R.: The contact process on trees. Ann. Probab. 20(4), 2089–2116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stacey, A.M.: The contact process on finite homogeneous trees. Probab. Theory Relat. Fields 121, 551–576 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Bruno Schapira for his help and suggestions during the preparation of this work. I wish to thank also the anonymous referee for carefully reading the manuscript and many valuable comments. This work is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 101.03–2017.07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Hao Can.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, V.H. Exponential Extinction Time of the Contact Process on Rank-One Inhomogeneous Random Graphs. J Theor Probab 32, 106–130 (2019). https://doi.org/10.1007/s10959-017-0786-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0786-9

Keywords

Mathematics Subject Classification (2010)

Navigation