Skip to main content
Log in

LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We obtain a weak law of large numbers for quadratic forms of a stationary regular time series, imposing no rate of convergence to zero of its covariance function. We show how this law can be applied in proving universality properties of limiting spectral distributions of sample covariance matrices. In particular, we give another derivation of a recent result of Merlevède and Peligrad, who studied sample covariance matrices generated by IID samples of long memory time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamczak, R.: Some remarks on the Dozier–Silverstein theorem for random matrices with dependent entries. Random Matrices Theory Appl. 2, 46 (2013)

    Article  MathSciNet  Google Scholar 

  2. Anatolyev, S., Yaskov, P.: Asymptotics of diagonal elements of projection matrices under many instruments/regressors. Econom. Theory 33(3), 717–738 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bhansalia, R.J., Giraitis, L., Kokoszka, P.S.: Approximations and limit theory for quadratic forms of linear processes. Stoch. Proc. Appl. 117(1), 71–95 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z., Zhou, W.: Large sample covariance matrices without independence structures in columns. Stat. Sin. 18, 425–442 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Beran, J., Feng, Y., Gosh, S., Kulik, R.: Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer, New York (2013)

    Book  Google Scholar 

  6. Borovskikh, Y.V., Korolyuk, V.S.: Martingale Approximations. VSP BV, Utrecht (1997)

    MATH  Google Scholar 

  7. De Jong, R.M.: Law large numbers for dependent heterogeneous processes. Econom. Theory 11(2), 347–358 (1995)

    Article  MathSciNet  Google Scholar 

  8. Hall, P.: On the \(L_p\) convergence of sums of independent random variables. Math. Proc. Camb. Philos. Soc. 82, 439–446 (1977)

    Article  Google Scholar 

  9. Girko, V., Gupta, A.K.: Asymptotic behavior of spectral function of empirical covariance matrices. Random Oper. Stoch. Eqs. 2(1), 44–60 (1994)

    MathSciNet  Google Scholar 

  10. Götze, F., Tikhomirov, A.N.: Asymptotic distribution of quadratic forms. Ann. Probab. 27, 1072–1098 (1999)

    Article  MathSciNet  Google Scholar 

  11. Marchenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72, 507–536 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Marshall, M.W., Olkin, I., Arnold, B.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  13. Merlevède, F., Peligrad, M.: On the empirical spectral distribution for matrices with long memory and independent rows. Stoch. Proc. Appl. 126(9), 2734–2760 (2016)

    Article  MathSciNet  Google Scholar 

  14. Pajor, A., Pastur, L.: On the limiting empirical measure of the sum of rank one matrices with log-concave distribution. Studio Math. 195, 11–29 (2009)

    Article  MathSciNet  Google Scholar 

  15. Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, vol. 171. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  16. Shao, X., Wu, W.B.: A limit theorem for quadratic forms and its applications. Econom. Theory 23, 930–951 (2007)

    Article  MathSciNet  Google Scholar 

  17. Shiryaev, A.N.: Probability. Springer, New York (1996)

    Book  Google Scholar 

  18. Silverstein, J.: Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivariate Anal. 55, 331–339 (1995)

    Article  MathSciNet  Google Scholar 

  19. Tao, T.: Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  20. Wu, W.B., Xiao, H.: Covariance matrix estimation for stationary time series. Ann. Stat. 40, 466–493 (2012)

    Article  MathSciNet  Google Scholar 

  21. Yao, J.: A note on a Marchenko–Pastur type theorem for time series. Stat. Probab. Lett. 82, 22–28 (2012)

    Article  Google Scholar 

  22. Yaskov, P.: A short proof of the Marchenko–Pastur theorem. Comptes Rendus Mathematique 354, 319–322 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yaskov, P.: Necessary and sufficient conditions for the Marchenko–Pastur theorem. Electron. Commun. Probab. (2016). doi:10.1214/16-ECP4748

  24. Yaskov, P.: Variance inequalities for quadratic forms with applications. Math. Methods Stat. 24(4), 309–319 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks an anonymous reviewer for constructive comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Yaskov.

Additional information

This work is supported by the Russian Science Foundation under Grant 14-21-00162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaskov, P. LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory. J Theor Probab 31, 2032–2055 (2018). https://doi.org/10.1007/s10959-017-0767-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0767-z

Keywords

Mathematics Subject Classification (2010)

Navigation