Abstract
The probability that all eigenvalues of a product of m independent \(N \times N\) subblocks of a Haar distributed random real orthogonal matrix of size \((L_i+N) \times (L_i+N)\), \((i=1,\dots ,m)\) are real is calculated as a multidimensional integral, and as a determinant. Both involve Meijer G-functions. Evaluation formulae of the latter, based on a recursive scheme, allow it to be proved that for any m and with each \(L_i\) even the probability is a rational number. The formulae furthermore provide for explicit computation in small order cases.
Similar content being viewed by others
References
Adhikari, K., Reddy, N.K., Reddy, T.R., Saha, K.: Determinantal point processes in the plane from products of random matrices. Ann. Inst. H. Poincaré Probab. Stat. 52, 16–46 (2016)
Akemann, G., Kanzieper, E.: Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem. J. Stat. Phys. 129, 1159–1231 (2007)
Bergqvist, G., Forrester, P.J.: Rank probabilities for real random \(n \times n \times 2\) tensors. Elec. Commun. Probab. 16, 630–637 (2011)
de Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. 19, 133–151 (1955)
Edelman, A.: The probability that a random real Gaussian matrix has \(k\) real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60, 203–232 (1997)
Fischmann, J.A.: Eigenvalue distributions on a single ring, Ph.D. thesis, Queen Mary, University of London (2012)
Fischmann, J., Bruzda, W., Khoruzhenko, B.A., Sommers, H.-J., Zyczkowski, K.: Induced Ginibre ensemble of random matrices and quantum operations. J. Phys. A 45, 075203 (2012)
Forrester, P.J., Ipsen, J.R.: Log-gases and random matrices. Princeton University Press, Princeton (2010)
Forrester, P.J., Ipsen, J.R.: Probability of all eigenvalues real for products of standard Gaussian matrices. J. Phys. A 47, 065202 (2014)
Forrester, P.J., Ipsen, J.R.: Diffusion processes and the asymptotic bulk gap probability for the real Ginibre ensemble. J. Phys. A 48, 324001 (2015)
Forrester, P.J., Ipsen, J.R.: Real eigenvalue statistics for products of asymmetric real Gaussian matrices. Linear Algebra Appl. 510, 259–290 (2016)
Forrester, P.J., Mays, A.: Pfaffian point processes for the Gaussian real generalised eigenvalue problem. Prob. Theor. Rel. Field 154, 1–47 (2012)
Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99, 050603 (2007)
Forrester, P.J., Nagao, T.: Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A 41, 375003 (2008)
Garcia del Molino, L.C., Pakdaman, K., Touboul, J.: Eigenvalues of non-symmetric random matrices: transitions and universality, arXiv:1605.00623, (2016)
Garcia del Molino, L.C., Pakdaman, K., Touboul, J., Wainrib, G.: The real Ginibre ensemble with \(k = o(n)\) real eigenvalues. J. Stat. Phys. 162, 303–323 (2016)
Ipsen, J.R., Kieburg, M.: Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Phys. Rev. E 89, 032106 (2014)
Kanzieper, E., Poplavskyi, M., Timm, C., Tribe, R., Zaboronski, O.: What is the probability that a large random matrix has no real eigenvalues? Ann. Appl. Probab. 65, 2733–2753 (2016)
Khoruzhenko, B.A., Sommers, H.-J., Zyczkowski, K.: Truncations of random orthogonal matrices. Phys. Rev. E 82, 040106 (2010)
Kumar, S.: Exact evaluations of some Meijer G-functions and probability of all eigenvalues real for products of two Gaussian matrices. J. Phys. A 48, 445206 (2015)
Lakshminarayan, A.: On the number of real eigenvalues of products of random matrices and an application to quantum entanglement. J. Phys. A 46, 152003 (2013)
Luke, Y.L.: The special functions and their approximations, vol. I. Academic Press, New York-London (1969)
Mays, A.: A geometrical triumvirate of real random matrices, Ph.D. thesis, University of Melbourne (2012)
Simm, N.J.: Central limit theorems for the real eigenvalues of large random matrices. Random Matrice Theor. Appl. 06, 1750002 (2017)
ten Berge, J.B.: Kruskal’s polynomial for \(2 \times 2 \times 2\) arrays and a generalization to \(2 \times n \times n\) arrays. Psychometrika 56, 631–636 (1991)
Wolfram Research Inc. Mathematica Version 10.0 (Wolfram Research Inc.: Champaign, Illinois)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of PJF was supported by the Australian Research Council through Grant DP14102613.
Rights and permissions
About this article
Cite this article
Forrester, P.J., Kumar, S. The Probability That All Eigenvalues are Real for Products of Truncated Real Orthogonal Random Matrices. J Theor Probab 31, 2056–2071 (2018). https://doi.org/10.1007/s10959-017-0766-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-017-0766-0
Keywords
- Random matrix products
- Truncated orthogonal matrices
- Probability of real eigenvalues
- Meijer G-functions
- Arithmetic structures