Persistent Random Walks. I. Recurrence Versus Transience


We consider a walker on the line that at each step keeps the same direction with a probability which depends on the time already spent in the direction the walker is currently moving. These walks with memories of variable length can be seen as generalizations of directionally reinforced random walks introduced in Mauldin et al. (Adv Math 117(2):239–252, 1996). We give a complete and usable characterization of the recurrence or transience in terms of the probabilities to switch the direction and we formulate some laws of large numbers. The most fruitful situation emerges when the running times both have an infinite mean. In that case, these properties are related to the behaviour of some embedded random walk with an undefined drift so that these features depend on the asymptotics of the distribution tails related to the persistence times. In the other case, the criterion reduces to a null-drift condition. Finally, we deduce some criteria for a wider class of persistent random walks whose increments are encoded by a variable length Markov chain having—in full generality—no renewal pattern in such a way that their study does not reduce to a skeleton RW as for the original model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Cénac, P., Chauvin, B., Herrmann, S., Vallois, P.: Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes. Markov Process. Relat. Fields 19(1), 1–50 (2013)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Cénac, P., Chauvin, B., Paccaut, F., Pouyanne, N.: Context trees, variable length Markov chains and dynamical sources. In: Séminaire de Probabilités XLIV, Lecture Notes in Math., vol. 2046, pp. 1–39. Springer, Heidelberg (2012)

  3. 3.

    Csiszár, I.: Festschrift in honor of Jorma Rissanen on the occasion of his 75th birthday edited by Peter Grünwald, Petri Myllymäki, Ioan Tabus, Marcelo Weinberger. Bin Yu. Int. Stat. Rev. 76(3), 436–437 (2008)

    Article  Google Scholar 

  4. 4.

    Eckstein, E.C., Goldstein, J.A., Leggas, M.: The mathematics of suspensions: Kac walks and asymptotic analyticity. In: Proceedings of the Fourth Mississippi State Conference on Difference Equations and Computational Simulations (1999), Electron. J. Differ. Equ. Conf., vol. 3, pp. 39–50. Southwest Texas State Univ., San Marcos, TX (2000)

  5. 5.

    Erickson, K.B.: The strong law of large numbers when the mean is undefined. Trans. Am. Math. Soc. 185, 371–381 (1974/1973)

  6. 6.

    Feller, W.: An introduction to probability theory and its applications, vol. II, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  7. 7.

    Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Henderson, R., Renshaw, E., Ford, D.: A note on the recurrence of a correlated random walk. J. Appl. Probab. 20(3), 696–699 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4, 497–509 (1974). Reprinting of an article published in 1956, Papers arising from a Conference on Stochastic Differential Equations (Univ. Alberta, Edmonton, Alta., 1972)

  10. 10.

    Kesten, H.: The limit points of a normalized random walk. Ann. Math. Stat. 41, 1173–1205 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Lenci, M.: Recurrence for persistent random walks in two dimensions. Stoch. Dyn. 7(1), 53–74 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Mauldin, R.D., Monticino, M., von Weizsäcker, H.: Directionally reinforced random walks. Adv. Math. 117(2), 239–252 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Renshaw, E., Henderson, R.: The correlated random walk. J. Appl. Probab. 18(2), 403–414 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Rissanen, J.: A universal data compression system. IEEE Trans. Inf. Theory 29(5), 656–664 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Siegmund-Schultze, R., von Weizsäcker, H.: Level crossing probabilities. II. Polygonal recurrence of multidimensional random walks. Adv. Math. 208(2), 680–698 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Weiss, G.H.: Aspects and Applications of the Random Walk. Random Materials and Processes. North-Holland Publishing Co., Amsterdam (1994)

    Google Scholar 

  17. 17.

    Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Phys. A 311(3–4), 381–410 (2002)

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors wish to thank the referee for his or her valuable advice and suggestions – especially Remark 3.1 – improving the readability of the exposition and enriching the content of the paper.

Author information



Corresponding author

Correspondence to Yoann Offret.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cénac, P., Le Ny, A., de Loynes, B. et al. Persistent Random Walks. I. Recurrence Versus Transience. J Theor Probab 31, 232–243 (2018).

Download citation


  • Persistent and directionally reinforced random walks
  • Variable length memory
  • Recurrence and transience
  • Random walk with undefined mean

Mathematics Subject Classification (2010)

  • 60G50
  • 60J15
  • 60G17
  • 60J05
  • 37B20
  • 60K35