Abstract
We extend the Itō formula (Rajeev in From Tanaka’s formula to Ito’s formula: distributions, tensor products and local times, Springer, Berlin, 2001, Theorem 2.3) for semimartingales with paths that are right continuous and have left limits. We also comment on the local time process of such semimartingales. We apply the Itō formula to Lévy processes to obtain existence of solutions to certain classes of stochastic differential equations in the Hermite–Sobolev spaces.
Similar content being viewed by others
Change history
01 November 2017
The following corrections are required in Theorem 4.7.
References
Applebaum, D.: Lévy Processes and Stochastic Calculus: Cambridge Studies in Advanced Mathematics, vol. 116, 2nd edn. Cambridge University Press, Cambridge (2009). doi:10.1017/CBO9780511809781
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions: Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992). doi:10.1017/CBO9780511666223
Hida, T.: Brownian motion. Applications of Mathematics, vol. 11 (Translated from the Japanese by the author and T. P. Speed). Springer, New York (1980)
Itō, K.: Foundations of stochastic differential equations in infinite-dimensional spaces. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 47. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1984)
Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, second edn. Springer, Berlin (2003)
Kallenberg, O.: Foundations of Modern Probability. Probability and its Applications (New York). Springer, New York (1997)
Kallianpur, G., Xiong, J.: Stochastic differential equations in infinite-dimensional spaces. Institute of Mathematical StatisticsLecture Notes—Monograph Series, 26. Institute of MathematicalStatistics, Hayward, CA (1995). Expanded version of the lectures delivered as part of the 1993 Barrett Lectures at the University of Tennessee, Knoxville, TN, March 25–27, 1993, With a foreword by Balram S. Rajput and Jan Rosinski
Kunita, H.: Stochastic integrals based on martingales taking values in Hilbert space. Nagoya Math. J. 38, 41–52 (1970)
Métivier, M.: Semimartingales. de Gruyter Studies in Mathematics, vol. 2. Walter de Gruyter & Co., Berlin (1982). A course on stochastic processes
Métivier, M., Pellaumail, J.: Stochastic Integration. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1980). Probability and Mathematical Statistics
Mitoma, I.: Martingales of random distributions. Mem. Fac. Sci. Kyushu Univ. Ser. A 35(1), 185–197 (1981). doi:10.2206/kyushumfs.35.185
Protter, P.E.: Stochastic integration and differential equations. Applications of Mathematics (New York), vol. 21, second edn. Springer, Berlin (2004). Stochastic Modelling and Applied Probability
Rajeev, B.: From Tanaka’s formula to Ito’s formula: distributions, tensor products and local times. In: Séminaire de Probabilités, XXXV, Lecture Notes in Math., vol. 1755, pp. 371–389. Springer, Berlin (2001)
Rajeev, B.: From Tanaka’s formula to Itô’s formula: the fundamental theorem of stochastic calculus. Proc. Indian Acad. Sci. Math. Sci. 107(3), 319–327 (1997). doi:10.1007/BF02867261
Rajeev, B.: Translation invariant diffusion in the space of tempered distributions. Indian J. Pure Appl. Math. 44(2), 231–258 (2013). doi:10.1007/s13226-013-0012-0
Rajeev, B., Thangavelu, S.: Probabilistic representations of solutions to the heat equation. Proc. Indian Acad. Sci. Math. Sci. 113(3), 321–332 (2003). doi:10.1007/BF02829609
Rajeev, B., Thangavelu, S.: Probabilistic representations of solutions of the forward equations. Potential Anal. 28(2), 139–162 (2008). doi:10.1007/s11118-007-9074-0
Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Dover Publications Inc., Mineola (2006). Unabridged republication of the 1967 original
Üstünel, A.S.: A generalization of Itô’s formula. J. Funct. Anal. 47(2), 143–152 (1982). doi:10.1016/0022-1236(82)90102-1
Acknowledgments
The author would like to thank Professor B. Rajeev, Indian Statistical Institute, Bangalore, for valuable suggestions during the work and pointing out the way to Theorem 4.5.
Author information
Authors and Affiliations
Corresponding author
Additional information
A correction to this article is available online at https://doi.org/10.1007/s10959-017-0792-y.
Rights and permissions
About this article
Cite this article
Bhar, S. An Itō Formula in the Space of Tempered Distributions. J Theor Probab 30, 510–528 (2017). https://doi.org/10.1007/s10959-015-0639-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-015-0639-3
Keywords
- Hermite–Sobolev spaces
- Tempered distributions
- \({\mathcal {S}}^{\prime }\) valued processes
- Itō formula
- Local times
- Stochastic integral
- Lévy processes