Skip to main content
Log in

The Cameron–Martin Theorem for (p-)Slepian Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We show a Cameron–Martin theorem for Slepian processes \(W_t:=\frac{1}{\sqrt{p}}(B_t-B_{t-p}), t\in [p,1]\), where \(p\ge \frac{1}{2}\) and \(B_s\) is Brownian motion. More exactly, we determine the class of functions \(F\) for which a density of \(F(t)+W_t\) with respect to \(W_t\) exists. Moreover, we prove an explicit formula for this density. p-Slepian processes are closely related to Slepian processes. p-Slepian processes play a prominent role among others in scan statistics and in testing for parameter constancy when data are taken from a moving window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams, J.: Ramp crossings for Slepian’s process. IEEE Trans. Inf. Theory 30(3), 574–575 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler RJ (1990) An introduction to continuity, extrema, and related topics for general Gaussian processes, Hayward, Calif., Institute of Mathematical Statistics, Lecture notes, monograph series 12

  3. Bar-David, I.: Radon–Nikodym derivatives, passages and maxima for a Gaussian process with particular covariance and mean. J. Appl. Probab. 12, 724–733 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bischoff, W., Miller, F.: Asymptotically optimal tests and optimal designs for testing the mean in regression models with applications to change-point problems. Ann. Inst. Stat. Math. 52, 658–679 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bischoff, W., Hashorva, E.: A lower bound for boundary crossing probabilities of Brownian bridge with trend. Stat. Probab. Lett. 74, 265–271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under translations. Ann. Math. 45, 386–396 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chu, C., Hornik, K., Kaun, C.: MOSUM tests for parameter constancy. Biometrika 82, 603–617 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cressie, N.: The asymptotic distribution of the scan statistic under uniformity. Ann. Probab. 8, 828–840 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, F., Li, W.: Small ball probabilities for the Slepian Gaussian fields. Trans. Am. Math. Soc. 359(3), 1339–1350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gegg, A. (2013) Moving Windows zum Auffnden von Change-Points. Doktor Thesis (in German), Catholic University of Eichstätt-Ingolstadt

  11. Jamison, B.: Reciprocal processes: the stationary Gaussian case. Ann. Math. Stat. 41, 1624–1630 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lifshits, M.: Lectures on Gaussian processes. In: SpringerBriefs in Mathematics. Springer, Berlin (2012)

  13. Liu, J.V., Zongfu, H., Mao, H.: Karhunen–Loève expansion for additive Slepian processes. Stat. Probab. Lett. 90, 93–99 (2014)

    Article  MATH  Google Scholar 

  14. Mörters, P., Peres, Y.: Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics 30. Cambridge University Press, Cambridge (2010)

  15. Nikitin, Y.Y., Orsingher, E.: Sharp small ball asymptotics for Slepian and Watson processes in Hilbert norm. (Russian) Zap. Nauchn. Semin. POMI, 320, 120–128 (2004), translation in J. Math. Sci., New York, 137(1), 4555–4560 (2006)

  16. Shepp, L.A.: Radon–Nikodym derivatives of Gaussian measures. Ann. Math. Stat. 37, 321–354 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shepp, L.A.: First passage time for a particular Gaussian process. Ann. Math. Stat. 42, 946–951 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Slepian, D.: First passage time for a particular Gaussian process. Ann. Math. Stat. 32, 610–612 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bischoff.

Appendix

Appendix

Proof of Lemma 3.1

Let \(\frac{1}{\sqrt{p}}\nabla _p s_{f}\in \mathcal {H}_{p-\text {Sl}}, f\in L^2[0,1]\), be arbitrary and let \(1/2\le p\le 1\). There are several places where the case \(p=1/2\) must be considered separately. We do not do this since the specifications for \(p=1/2\) are simpler than the following considerations for \(1/2<p\le 1\). By proposition 4.1 of [12], we get

$$\begin{aligned} \Vert \frac{1}{\sqrt{p}}\nabla _p s_{f}\Vert _{p-Sl}&= \frac{1}{\sqrt{p}}\inf _{g\in L^2[0,1]:\nabla _p s_{f}=\nabla _p s_{g}}\Vert s_g\Vert _{\mathcal {H}_{B_{[0,1]}}}\\&= \frac{1}{\sqrt{p}}\inf _{g\in L^2[0,1]:\nabla _p s_{f}=\nabla _p s_{g}}\Vert g\Vert _{L^2[0,1]}, \end{aligned}$$

where the second equality follows by Theorem 1.3. Each function \(f\in L^2[0,1]\) can be written \(\lambda -a.s.\) in the form

$$\begin{aligned} f(t)=\alpha \mathbf{1}_{[0,1-p]}(t)+a(t)+\beta \mathbf{1}_{(1-p,p)}(t) +b(t)+\gamma \mathbf{1}_{[p,1]}(t)+c(t), t\in [0,1], \end{aligned}$$
(7)

where

$$\begin{aligned} \alpha&= \frac{1}{1-p}s_f(1-p), a(t)=\mathbf{1}_{[0,1-p]}(t)(f(t)-\alpha ),\\ \beta&= \frac{1}{2p-1}(s_f(p)-s_f(1-p)), b(t)=\mathbf{1}_{(1-p,p)}(t)(f(t)-\beta ),\\ \gamma&= \frac{1}{1-p}(s_f(1)-s_f(p)), c(t)=\mathbf{1}_{[p,1]}(t)(f(t)-\gamma ). \end{aligned}$$

Note that the six summands in (7) build orthogonal functions in \(L^2[0,1]\). In the following, we use the consequence of this representation at several places without citing it explicitly. Furthermore, we have

$$\begin{aligned} s_f(p)=\alpha (1-p)+ \beta (2p-1), f(t)-f(t-p)=\gamma -\alpha +c(t)-a(t), t\in [p,1]. \end{aligned}$$

Next, we consider \(g\in L^2[0,1]\) of the specific form

$$\begin{aligned} g(t)=\alpha \mathbf{1}_{[0,1-p]}(t)+\beta \mathbf{1}_{(1-p,p)}(t)+(\alpha +\delta )\mathbf{1}_{[p,1]}(t), t\in [0,1], \alpha ,\beta ,\delta \in \mathbb {R}. \end{aligned}$$

Hence,

$$\begin{aligned} s_g(p)=\alpha (1-p)+\beta (2p-1) \Leftrightarrow \beta =\frac{1}{2p-1}(s_g(p)-\alpha (1-p)) \end{aligned}$$

and

$$\begin{aligned} g(t)-g(t-p)=\delta , t\in [p,1]. \end{aligned}$$

Thus, \(\nabla _p(g)(t)=s_g(p)+\delta t, t\in [p,1]\). Let \(g_0(t)=\alpha _0 \mathbf{1}_{[0,1-p]}(t)+\beta _0\mathbf{1}_{(1-p,p)}(t)+(\alpha _0+\delta _0)\mathbf{1}_{[p,1]}(t)\in L^2[0,1]\) be fixed and let \(g\in L^2[0,1]\) with \(\nabla _p(g)(t)=\nabla _p(g_0)(t)=s_{g_0}(p)+\delta _0 t, t\in [p,1]\). Then,

$$\begin{aligned} g(t)=\alpha \mathbf{1}_{[0,1-p]}(t)+\frac{1}{2p-1}(s_{g_0}(p)-\alpha (1-p))\mathbf{1}_{(1-p,p)}(t)+(\alpha +\delta _0)\mathbf{1}_{[p,1]}(t) \end{aligned}$$

and the square of its norm is given by

$$\begin{aligned} \Vert g\Vert ^2= \frac{1-p}{2p-1} (\alpha ^2 (3p-1)-2\alpha (s_{g_0}(p)-(2p-1)\delta _0))+\frac{s_{g_0}(p)^2}{2p-1}+\delta _0^2(1-p). \end{aligned}$$

This norm is minimal if and only if

$$\begin{aligned} \alpha =\frac{1}{3p-1}(s_{g_0}(p)-(2p-1)\delta _0). \end{aligned}$$

Hence, we obtain after some calculation

$$\begin{aligned} \Vert \nabla _p s_{g_0}\Vert ^2_{p-Sl}= \frac{1}{3p-1}(2s_{g_0}(p)^2+2(1-p)s_{g_0}(p)\delta _0+\delta _0^2(1-p)p). \end{aligned}$$

Next, we consider a general function

$$\begin{aligned} f=\alpha \mathbf{1}_{[0,1-p]}(t)+a(t)+\beta \mathbf{1}_{(1-p,p)}(t)+b(t)+(\alpha +\delta )\mathbf{1}_{[p,1]}(t)+c(t)\in L^2[0,1]. \end{aligned}$$

By the above considerations, we obtain

$$\begin{aligned} \Vert \nabla _p s_f\Vert _{p-Sl}^2&= \frac{1}{3p-1}(2s_{f}(p)^2+2(1-p)s_{f}(p)\delta +\delta ^2(1-p)p)\\&\quad +\,\min (\Vert a(t)\Vert ^2+\Vert b(t)\Vert ^2+\Vert c(t)\Vert ^2)\nonumber \end{aligned}$$

where the minimum is taken over all \(a:[0,1-p]\rightarrow \mathbb {R}, b:(1-p,p)\rightarrow \mathbb {R}, c:[p,1]\rightarrow \mathbb {R}\) with \(s_a(1-p)=s_b(2p-1)=s_c(1)=0\) and \(c(t)-a(t-p)=f(t)-f(t-p)-\delta \). It holds true for \(t\in [p,1]\) fixed

$$\begin{aligned} \min |a(t-p)|^2+|c(t)|^2&= |\frac{1}{2}(-c(t)+a(t-p))|^2+|\frac{1}{2}(c(t)-a(t-p))|^2\\&= \frac{1}{2}|(c(t)-a(t-p))|^2 =\frac{1}{2}|f(t)-f(t-p)-\delta |^2, \end{aligned}$$

where the minimum is taken over all \(a(t-p), c(t)\in \mathbb {R}\) with \(c(t)-a(t-p)=f(t)-f(t-p)-\delta \). Hence,

$$\begin{aligned} \Vert \nabla _p s_f\Vert _{p-Sl}^2&= \frac{1}{3p-1}(2s_{f}(p)^2+2(1-p)s_{f}(p)\delta +\delta ^2(1-p)p)\\&\quad +\,\min \Vert a(t)\Vert _{L^2[0,1]}^2+\Vert c(t)\Vert _{L^2[0,1]}^2.\\&= \frac{1}{3p-1}(2s_{f}(p)^2+2(1-p)s_{f}(p)\delta +\delta ^2(1-p)p)\\&\quad +\,\frac{1}{2}\Vert (f(t)-f(t-p)-\delta )_{t\in [p,1]}\Vert _{L^2[p,1]}^2\\&= \frac{1}{3p-1}(2s_{f}(p)^2+2(1-p)s_{f}(p)\delta +\delta ^2(1-p)p)\\&\quad +\,\frac{1}{2}(\Vert (f(t)-f(t-p))_{t\in [p,1]}\Vert _{L^2[p,1]}^2 -(1-p)\delta ^2)\\&= \frac{1}{2(3p-1)}(2s_{f}(p)+\delta (1-p))^2\\&\quad +\, \frac{1}{2}\Vert (f(t)-f(t-p))_{t\in [p,1]}\Vert _{L^2[p,1]}^2. \end{aligned}$$

This minimum is obtained at the function

$$\begin{aligned} f^*(t)&= \left( \frac{1}{3p-1}(s_{f}(p)+\frac{1-p}{2}\delta )+\frac{1}{2}(-f(t+p)+f(t))\right) \mathbf{1}_{[0,1-p]}(t)\\&\quad +\,\frac{1}{2p-1}(s_f(p)-\frac{1-p}{3p-1}(s_{f}(p)-(2p-1)\delta ))\mathbf{1}_{(1-p,p)}(t)\\&\quad +\,\left( \frac{1}{3p-1}(s_{f}(p)+\frac{1-p}{2}\delta )+\frac{1}{2}(f(t+p)-f(t))\right) \mathbf{1}_{[p,1]}(t), t\in [0,1]. \end{aligned}$$

Proof of Lemma 3.2

We have to prove Eq. (1) for the p-Slepian-process. To this end, let \(p\le t\le 1, f\in L^2[0,1]\) and \((\nabla _p s_f)(\cdot )=s_f(p)+s_{\nabla _p f}(\cdot )\in \mathcal {H}_{p-\text {Sl}}.\) It holds true for \(t\in [p,1]\):

$$\begin{aligned}&\mathbf {E}\,\left( \frac{1}{\sqrt{p}}(\nabla _pB)_{[p,1]}(t)\cdot \frac{3s_f(p)+s_{\nabla _p f}(1)}{2(3p-1)} \left( (\nabla _pB)_{[p,1]}(p)+(\nabla _pB)_{[p,1]}(1)\right) \right) \\&\qquad +\,\mathbf {E}\,\left( \frac{1}{\sqrt{p}}(\nabla _pB)_{[p,1]}(t)\cdot \frac{1}{2}\int _p^{1} \nabla _p f(s) \; d(\nabla _pB)_{[p,1]}(s))\right) \\&\quad = \frac{3s_f(p)+s_{\nabla _p f}(1)}{2\sqrt{p}(3p-1)} \mathbf {E}\,\left( (B_{[0,1]}(t)-B_{[0,1]}(t-p))(B_{[0,1]}(p) +B_{[0,1]}(1)-B_{[0,1]}(1-p)) \right) \\&\qquad +\,\frac{1}{2\sqrt{p}}\mathbf {E}\,\left( (B_{[0,1]}(t)-B_{[0,1]}(t-p))\int _p^{1} \nabla _p f(s) \; d (B_{[0,1]}(s)-B_{[0,1]}(s-p))\right) \\&\quad = \frac{3s_f(p)+s_{\nabla _p f}(1)}{2\sqrt{p}}-\frac{1}{2\sqrt{p}}\left( s_{\nabla _p f}(1)-s_{\nabla _p f}(p)\right) = \frac{1}{\sqrt{p}}s_f(p)+s_{\frac{1}{\sqrt{p}}\nabla _p f}(t). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bischoff, W., Gegg, A. The Cameron–Martin Theorem for (p-)Slepian Processes. J Theor Probab 29, 707–715 (2016). https://doi.org/10.1007/s10959-014-0591-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-014-0591-7

Keywords

Mathematics Subject Classification

Navigation