Skip to main content
Log in

Pathwise Integrals and Itô–Tanaka Formula for Gaussian Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove an Itô–Tanaka formula and existence of pathwise stochastic integrals for a wide class of Gaussian processes. Motivated by financial applications, we define the stochastic integrals as forward-type pathwise integrals introduced by Föllmer and as pathwise generalized Lebesgue–Stieltjes integrals introduced by Zähle. As an application, we illustrate the importance of the Itô–Tanaka formula for pricing and hedging of financial derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azmoodeh, E.: Riemann-Stieltjes Integrals with Respect to Fractional Brownian Motion and Applications. PhD Thesis. Helsinki University of Technology Institute of Mathematic s Research Reports A590 (2010)

  2. Azmoodeh, E., Mishura, Y., Valkeila, E.: On hedging European options in geometric fractional Brownian motion market model. Stat. Decis. 27, 129–143 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Azmoodeh, E., Viitasaari, L.: Rate of convergence for discretization of integrals with respect to fractional Brownian motion. J. Theor. Probab. (2013). doi:10.1007/s10959-013-0495-y

  4. Bender, C., Sottinen, T., Valkeila, E.: Arbitrage with fractional Brownian motion? Theory Stoch. Process. 13(29), 23–27 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bender, C., Sottinen, T., Valkeila, E.: Pricing by hedging and no-arbitrage beyond semimartingales. Financ. Stoch. 12, 441–468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, S.M.: Local nondeterminism and local times of gaussian processes. Indiana Univ. Math. J. 23, 69–94 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertoin, J.: Temps locaux et intégration stochastique pour les processus de dirichlet. Séminaire de Probabilités 21, 191–205 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutin, L., Nualart, D., Tudor, C.: Tanaka formula for the fractional Brownian motion. Stoch. Process. Appl. 94(2), 301–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Föllmer, H.: Calcul d’ito sans probabilités. Séminaire de Probabilités 15, 143–150 (1981)

    MATH  Google Scholar 

  10. Nualart, D., Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  12. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Yvendon (1993)

    MATH  Google Scholar 

  13. Sondermann, D.: Introduction to Stochastic Calculus for Finance: A New Didactic Approach. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Sottinen, T., Valkeila, E.: On arbitrage and replication in the fractional Black–Scholes pricing model. Stat. Decis. 21, 93–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Young, L.C.: An inequality of the hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. Part I. Probab. Theory Relat. Fields 111, 333–372 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Viitasaari.

Additional information

L. Viitasaari was financed by the Finnish Doctoral Programme in Stochastics and Statistics.

Appendix: Level-Crossing Lemma

Appendix: Level-Crossing Lemma

The key lemma in our analysis is the following estimate for the probability that a Gaussian process \(X\) crosses a fixed level. Actually, in [3] the authors proved the lemma in the particular case of fractional Brownian motion. We extend the result here for more general Gaussian process. We consider only probability \({\mathbb {P}}(X_s < a < X_t)\) and a case \(\sup _{s\le T} V(s) \le 1\). However, by considering processes \(Y = -X\) and \(Y = \frac{X}{\sqrt{V^*}}\) we obtain same bound for \({\mathbb {P}}(X_s > a > X_t)\) and for the general case \(\sup _{s\le T} V(s) < \infty \). Also, note that continuous Gaussian processes on compact time intervals satisfy \(V^*<\infty \).

Lemma 4.1

Let \(X\) be a Gaussian process with positive covariance function \(R\). Denote

$$\begin{aligned} \sigma ^2 = \frac{R(s,s)R(t,t) - R(t,s)^2}{R(s,s)}, \end{aligned}$$

and fix \(0 < s < t \le T\) and \( a \in {\mathbb {R}}\). Assume that the variance function satisfies

$$\begin{aligned} V^* := \sup _{s_\le T} V(s) \le 1. \end{aligned}$$
  1. (i)

    If

    $$\begin{aligned} \frac{R(s,s)}{R(t,s)}(a-1) < a, \end{aligned}$$

    then there exists a constant \(C\), independent of \(s\), \(t\), \(T\) and \(a\), such that

    $$\begin{aligned} {\mathbb {P}}\big ( X_s < a < X_t\big ) \le I_1 + I_2 + I_3 +I_4, \end{aligned}$$

    where

    $$\begin{aligned} I_1&\le C \min [\sqrt{V(s)}\sigma ,\sigma ^2] e^{-\frac{a^2}{2}}, \\ I_2&\le Ce^{-\frac{\min [a^2,(a-1)^2]}{2V^*}}\frac{\sigma }{\sqrt{V(s)}}\left[ {\mathbf {1}}_{|a|>2}+\left( a-\frac{R(s,s)}{R(t,s)}(a-1)\right) {\mathbf {1}}_{|a|\le 2}\right] , \\ I_3&\le C \frac{R(s,s)}{R(t,s)}\frac{\sigma }{\sqrt{V(s)}}e^{-\frac{\min [a^2,(a-1)^2]}{2V^*}}, \\ I_4&\le e^{-\frac{a^2}{2V^*}}\frac{1}{\sqrt{V(s)}}\left| a\left( 1-\frac{R(s,s)}{R(t,s)}\right) \right| , \end{aligned}$$
  2. (ii)

    If

    $$\begin{aligned} \frac{R(s,s)}{R(t,s)}(a-1) \ge a, \end{aligned}$$

    then there exists a constant \(C\), independent of \(s\), \(t\), \(T\) and \(a\), such that

    $$\begin{aligned} {\mathbb {P}}\big ( X_s < a <X_t \big ) \le C \min [\sqrt{V(s)}\sigma ,\sigma ^2] e^{-\frac{a^2}{2}}. \end{aligned}$$

In the proof we use the following well-known estimate.

Lemma 4.2

Let \(Z\) be a standard normal random variable and fix \(a>0\). Then

$$\begin{aligned} {\mathbb {P}}\big (Z>a\big ) \le \frac{1}{\sqrt{2\pi }a}e^{-\frac{a^2}{2}}. \end{aligned}$$

Proof of Lemma 4.1

We make use of decomposition

$$\begin{aligned} X_t = \frac{R(t,s)}{R(s,s)}X_s + \sigma Y, \end{aligned}$$

where \(Y\) is \(N(0,1)\) random variable independent of \(X_s\) and

$$\begin{aligned} \sigma ^2 = \frac{R(t,t)R(s,s)-R(t,s)^2}{R(s,s)}. \end{aligned}$$

Assume that

$$\begin{aligned} \frac{R(s,s)}{R(t,s)}(a-1) < a. \end{aligned}$$

Then we obtain

$$\begin{aligned} {\mathbb {P}}(X_s<a<X_t)&= \int _{-\infty }^a {\mathbb {P}}\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \frac{1}{\sqrt{2\pi }\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x\\&= \int _{-\infty }^{\frac{R(s,s)}{R(t,s)}(a-1)} {\mathbb {P}}\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \frac{1}{\sqrt{2\pi }\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x\\&\quad + \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} {\mathbb {P}}\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \frac{1}{\sqrt{2\pi }\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x\\&= I_1 + A_1. \end{aligned}$$

Moreover, if

$$\begin{aligned} \frac{R(s,s)}{R(t,s)}(a-1) \ge a, \end{aligned}$$

then

$$\begin{aligned} {\mathbb {P}}(X_s<a<X_t) \le I_1. \end{aligned}$$

Note that here \(I_1\) corresponds the one given in the Lemma and \(A_1\) contains \(I_2\), \(I_3\) and \(I_4\). We shall use similar technique for the rest of the proof.

We begin with \(I_1\). By Lemma 4.2 we have

$$\begin{aligned} {\mathbb {P}}\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \le \frac{1}{\sqrt{2\pi }A(x)}e^{-\frac{A(x)^2}{2}}, \end{aligned}$$

where \(A(x) = \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\). Hence

$$\begin{aligned} I_1&\le \int _{-\infty }^{\frac{R(s,s)}{R(t,s)}(a-1)} \frac{1}{\sqrt{2\pi }A(x)}e^{-\frac{A(x)^2}{2}}\frac{1}{\sqrt{2\pi }\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x\\&\le \frac{\sigma }{\sqrt{V(s)}}e^{-\frac{a^2}{2}}\int _{-\infty }^{\frac{R(s,s)}{R(t,s)}(a-1)} \frac{1}{2\pi }e^{-\frac{A(x)^2}{2}-\frac{x^2}{2V(s)} + \frac{a^2}{2}}\,{\mathrm {d}}x\\&= \frac{R(s,s)}{R(t,s)}\frac{\sigma }{\sqrt{V(s)}}e^{-\frac{a^2}{2}}\int _{1}^{\infty } \frac{1}{2\pi }e^{-\frac{y^2}{2\sigma ^2}-\frac{\left[ \frac{R(s,s)}{R(t,s)}(a-y)\right] ^2}{2V(s)} + \frac{a^2}{2}}\,{\mathrm {d}}y \end{aligned}$$

We proceed to study the integral. Now,

$$\begin{aligned}&-\frac{y^2}{2\sigma ^2}-\frac{\left[ \frac{R(s,s)}{R(t,s)}(a-y)\right] ^2}{2V(s)} + \frac{a^2}{2} \\&\quad = -\frac{1}{2\bar{\sigma }^2}\left[ \left( y-a\frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2\right) ^2 + a^2\left( \frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2 - \bar{\sigma }^2 - \frac{R(s,s)^2}{R(t,s)^4}\bar{\sigma }^4\right) \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{1}{\bar{\sigma }^2}=\frac{1}{\sigma ^2} + \frac{R(s,s)}{R(t,s)^2}. \end{aligned}$$

Now

$$\begin{aligned} \frac{1}{\bar{\sigma }^2}\ge 1 \end{aligned}$$

and since \(V^*\le 1\), we also have

$$\begin{aligned} \left( \frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2 - \bar{\sigma }^2 - \frac{R(s,s)^2}{R(t,s)^4}\bar{\sigma }^4\right) \ge 0. \end{aligned}$$

Thus,

$$\begin{aligned} \int _{1}^{\infty } \frac{1}{2\pi }e^{-\frac{y^2}{2\sigma ^2}-\frac{\left[ \frac{R(s,s)}{R(t,s)}(a-y)\right] ^2}{2s^{2H}} + \frac{a^2}{2}}\,{\mathrm {d}}y&\le \int _{1}^{\infty } \frac{1}{2\pi }e^{-\frac{1}{2\bar{\sigma }^2}\left( y-a\frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2\right) ^2}\,{\mathrm {d}}y\\&\le \frac{\bar{\sigma }}{\sqrt{2\pi }}. \end{aligned}$$

Hence, we obtain for \(I_1\) that

$$\begin{aligned} I_1 \le C\frac{R(s,s)}{R(t,s)}\frac{\sigma }{\sqrt{V(s)}}e^{-\frac{a^2}{2}}\bar{\sigma }. \end{aligned}$$

Now we have

$$\begin{aligned} \bar{\sigma }^2 = \frac{\sigma ^2R(t,s)^2}{\sigma ^2+R(s,s)}, \end{aligned}$$

and hence for \(I_1\) there exists a constant \(C\) such that

$$\begin{aligned} I_1 \le C\min [\sqrt{V(s)}\sigma ,\sigma ^2]e^{-\frac{a^2}{2}}. \end{aligned}$$

For the term \(A_1\) we have

$$\begin{aligned} A_1&= \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int _{A(x)}^\infty \frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}}\,{\mathrm {d}}y\frac{1}{\sqrt{2\pi }\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x\\&= \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int _{A(x)}^{\frac{1}{\sigma }}\ldots {\mathrm {d}}y{\mathrm {d}}x + \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int _{\frac{1}{\sigma }}^\infty \ldots {\mathrm {d}}y{\mathrm {d}}x\\&= A_{2}+I_{2}. \end{aligned}$$

Consider then \(I_2\). Applying Lemma 4.2 we obtain

$$\begin{aligned} I_2 \le C \frac{\sigma }{\sqrt{V(s)}}e^{-\frac{1}{2\sigma ^2}}\int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x. \end{aligned}$$

Note that \(\sigma ^2\ge 0\). Therefore,

$$\begin{aligned} \frac{R(s,s)}{R(t,s)^2}\ge \frac{1}{R(t,t)}\ge \frac{1}{V^*}. \end{aligned}$$

Now if \(|a|> 2\), we can apply Lemma 4.2 to obtain

$$\begin{aligned} \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x \le Ce^{-\frac{\min [a^2,(a-1)^2]}{2V^*}}. \end{aligned}$$

As a consequence, we obtain the required upper bound for \(I_2\). Now, if \(|a| \le 2\) we obtain

$$\begin{aligned} \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x \le Ce^{-\frac{\min [a^2,(a-1)^2]}{2V^*}}\left[ a-\frac{R(s,s)}{R(t,s)}(a-1)\right] . \end{aligned}$$

To conclude we study the term \(A_2\). If we have

$$\begin{aligned} \frac{R(s,s)}{R(t,s)}a < a, \end{aligned}$$

then by applying the Tonelli theorem we obtain

$$\begin{aligned} A_2&= \int _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int _{A(x)}^{\frac{1}{\sigma }} \frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}}\,{\mathrm {d}}y\frac{1}{\sqrt{2\pi }\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}}\,{\mathrm {d}}x\\&= \int _{(\left[ 1-\frac{R(t,s)}{R(s,s)}\right] \frac{a}{\sigma }}^{\frac{1}{\sigma }}\int _{(a-\sigma y)\frac{R(s,s)}{R(t,s)}}^a \ldots {\mathrm {d}}x{\mathrm {d}}y\\&= \int _{(\left[ 1-\frac{R(t,s)}{R(s,s)}\right] \frac{a}{\sigma }}^{\frac{1}{\sigma }}\int _{(a-\sigma y)\frac{R(s,s)}{R(t,s)}}^{\frac{R(s,s)}{R(t,s)}a}\ldots {\mathrm {d}}x {\mathrm {d}}y + \int _{(\left[ 1-\frac{R(t,s)}{R(s,s)}\right] \frac{a}{\sigma }}^{\frac{1}{\sigma }}\int _{\frac{R(s,s)}{R(t,s)}a}^a\ldots {\mathrm {d}}x{\mathrm {d}}y\\&= I_3 + I_4. \end{aligned}$$

Moreover, if

$$\begin{aligned} \frac{R(s,s)}{R(t,s)}a \ge a, \end{aligned}$$

then

$$\begin{aligned} A_2 \le I_3. \end{aligned}$$

Now, for \(I_3\) we have

$$\begin{aligned}&\int _{(\left[ 1-\frac{R(t,s)}{R(s,s)}\right] \frac{a}{\sigma }}^{\frac{1}{\sigma }}\int _{(a-\sigma y)\frac{R(s,s)}{R(t,s)}}^{\frac{R(s,s)}{R(t,s)}a}e^{-\frac{y^2}{2}}\frac{1}{\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}} \,{\mathrm {d}}x {\mathrm {d}}y \\&\quad \quad \le C\frac{\sigma }{\sqrt{V(s)}}e^{-\frac{\min [a^2,(a-1)^2]}{2V^*}} \frac{R(s,s)}{R(t,s)}\int _{-\infty }^{\infty }|y|e^{-\frac{y^2}{2}}\,{\mathrm {d}}y. \end{aligned}$$

Hence, we have the required upper bound for \(I_3\). To conclude, note that for \(I_4\) we have

$$\begin{aligned} I_4&= \int _{(\left[ 1-\frac{R(t,s)}{R(s,s)}\right] \frac{a}{\sigma }}^{\frac{1}{\sigma }}\int _{\frac{R(s,s)}{R(t,s)}a}^ae^{-\frac{y^2}{2}}\frac{1}{\sqrt{V(s)}}e^{-\frac{x^2}{2V(s)}} \,{\mathrm {d}}x {\mathrm {d}}y\\&\le C\frac{1}{\sqrt{V(s)}}e^{-\frac{a^2}{2V^*}}|a|\left| 1-\frac{R(s,s)}{R(t,s)}\right| . \end{aligned}$$

This finishes the proof of Lemma 4.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sottinen, T., Viitasaari, L. Pathwise Integrals and Itô–Tanaka Formula for Gaussian Processes. J Theor Probab 29, 590–616 (2016). https://doi.org/10.1007/s10959-014-0588-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-014-0588-2

Keywords

Mathematics Subject Classification 2010

Navigation