Abstract
Tempered fractional stable motion adds an exponential tempering to the power-law kernel in a linear fractional stable motion, or a shift to the power-law filter in a harmonizable fractional stable motion. Increments from a stationary time series that can exhibit semi-long-range dependence. This paper develops the basic theory of tempered fractional stable processes, including dependence structure, sample path behavior, local times, and local nondeterminism.
This is a preview of subscription content, access via your institution.

References
Astrauskas, A., Levy, J.B., Taqqu, M.S.: The asymptotic dependence structure of the linear fractional Lévy motion. Lithuanian Math. J. 31(1), 1–19 (1991)
Boufoussi, B., Dozzi, M.E., Guerbaz, R.: Path properties of a class of locally asymptotically self similar processes. Electron. J. Probab. 13, 898–921 (2008)
Dozzi, M., Shevchenko, G.: Real harmonizable multifractional stable process and its local properties. Stoch. Proc. Appl. 121(7), 1509–1523 (2011)
Levy, J., Taqqu, M.S.: A characterization of the asymptotic behavior of stationary stable processes. Stable processes and related topics (Ithaca, NY, 1990). Prog. Probab. 25, 181–198 (1991)
Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence, RI (2001)
Magdziarz, M.: The dependence structure of the fractional Ornstein–Uhlenbeck process. Prob. Math. Stat. 25, 97–104 (2005)
Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)
Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013)
Meerschaert, M.M., Sabzikar, F.: Stochastic integration for tempered fractional Brownian motion. Stoch. Proc. Appl. 124(7), 2363–2387 (2014)
Meerschaert, M.M., Sabzikar, F., Phanikumar, M.S., Zeleke, A.: Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 2014, P09023 (2014)
Nolan, J.P.: Path properties of index-\(\beta \) stable fields. Ann. Probab. 16(4), 1596–1607 (1988)
Nolan, J.P.: Local nondeterminism and local times for stable processes. Probab. Theory Relat. Fields 82(3), 387–410 (1989)
Kokoszka, P.S., Taqqu, M.S.: New classes of self-similar symmetric stable random fields. J. Theor. Probab. 7, 527–549 (1994)
Sabzikar, F., Meerschaert, M. M.: Tempered fractional calculus. J. Comput. Phys. (to appear in the Special Issue on Fractional Partial Differential Equations). Preprint available at www.stt.msu.edu/users/mcubed/TFC
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, London (1993)
Samorodnitsky, S., Taqqu, M.S.: Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York (1994)
Stoev, S., Taqqu, M.S.: Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform. Fractals 12(1), 95–121 (2004)
Watkins, N.W., Credgington, D., Hnat, B., Chapman, S.C., Freeman, M.P., Greenhough, J.: Towards synthesis of solar wind and geomagnetic scaling exponents: a fractional Lévy motion model. Space Sci. Rev. 121(1–4), 271–284 (2005)
Xiao, Y.: Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math XV, 157–193 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meerschaert, M.M., Sabzikar, F. Tempered Fractional Stable Motion. J Theor Probab 29, 681–706 (2016). https://doi.org/10.1007/s10959-014-0585-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-014-0585-5