Abstract
A class of Gaussian processes generalizing the usual fractional Brownian motion for Hurst indices in (1/2,1) and multifractal Brownian motion introduced in Ralchenko and Shevchenko (2010 Theory Probab Math Stat 80:119–130) and Boufoussi et al. (Bernoulli 16(4):1294–1311, 2010) is presented. Any measurable function assuming values in this interval can now be chosen as a variable Hurst parameter. These processes allow for modeling of phenomena where the regularity properties can change with time either continuously or through jumps, such as in the volatility of a stock or in Internet traffic. Some properties of the sample paths of the new process class, including different types of continuity and long-range dependence, are discussed. It is found that the regularity properties of the Hurst function chosen directly correspond to the regularity properties of the sample paths of the processes. The long-range dependence property of fractional Brownian motion is preserved in the larger process class. As an application, Fokker–Planck-type equations for a time-changed fractional Brownian motion with variable Hurst parameter are found.
This is a preview of subscription content, access via your institution.





References
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)
Alos, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29(2), 766–801 (2001)
Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)
Ayache, A., Cohen, S., Véhel, J.: The covariance structure of multifractional Brownian motion, with application to long range dependence. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3810–3813. IEEE (2000)
Benassi, A., Roux, D., Jaffard, S.: Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13(1), 19–88 (1997)
Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)
Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic calculus for fractional Brownian motion and applications. Springer, Berlin (2007)
Boufoussi, B., Dozzi, M., Marty, R.: Local time and Tanaka formula for a Volterra-type multifractional Gaussian process. Bernoulli 16(4), 1294–1311 (2010)
Cambanis, S., Rajput, B.: Some zero-one laws for Gaussian processes. Ann. Probab. 1(2), 304–312 (1973)
Chronopoulou, A., Viens, F.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8(2), 379–403 (2012)
Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8(4), 291–323 (1998)
Conway, J.B.: A course in functional analysis. Springer, Berlin (1985)
Decreusefond, L.: Stochastic integration with respect to Volterra processes. Ann. de l’Inst. Henri Poincare (B) Probab. Stat. 41(2), 123–149 (2005)
Dekking, F., Lévy Véhel, J., Lutton, E., Tricot, C., et al.: Fractals: theory and applications in engineering. Springer, Berlin (1999)
Doob, J.: Stochastic processes. Wiley, New York (1962)
Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. arXiv preprint arXiv:0805.3823 (2008)
Hahn, M., Kobayashi, K., Ryvkina, J., Umarov, S.: On time-changed Gaussian processes and their associated Fokker–Planck–Kolmogorov equations. Electron. Commun. Probab. 16, 150–164 (2010)
Janczura, J., Wyłomańska, A.: Subdynamics of financial data from fractional Fokker–Planck equation. Munich personal RePEc archive (2009)
Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)
Jennane, R., Ohley, W., Majumdar, S., Lemineur, G.: Fractal analysis of bone X-ray tomographic microscopy projections. Trans. Med. Imaging 20(5), 443–449 (2001)
Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. CR (Dokl.) Acad. Sci. URSS 26, 115–118 (1940)
Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin (2011)
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)
Meerschaert, M., Scheffler, H.: Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)
Peltier, R.F., Véhel, J.L.: Multifractional Brownian motion: definition and preliminary results. Inria research report no. 2645 (1995)
Perrin, E., Harba, R., Iribarren, I., Jennane, R.: Piecewise fractional Brownian motion. IEEE Trans. Signal Process. 53(3), 1211–1215 (2005)
Prudnikov, A., Brychkov, Y., Marichev, O.: Integrals and Series. Gordon and Breach, London (1986)
Ralchenko, K., Shevchenko, G.: Path properties of multifractal Brownian motion. Theory Probab. Math. Stat. 80, 119–130 (2010)
Ryvkina, J.: Fractional Brownian motion with variable Hurst parameter. Ph.D. thesis, Tufts University (2013)
Véhel, J., Riedi, R.: Fractional Brownian motion and data traffic modeling: the other end of the spectrum. Fractals Eng. 97, 185–202 (1997)
Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)
Acknowledgments
The author wishes to thank Dr. Marjorie Hahn for her help and advice, Dr. Kei Kobayashi for productive comments as well as Dr. Anna Pósfei for fruitful discussions. The author is also indebted to an anonymous referee for calling my attention to papers [29] and [8] as well as suggestions which increased the clarity of the paper.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
Lemma 6.1
Let \(\alpha <2, \gamma >1/2,\delta >1/2\) and \(I=\int _0^{a}u^{1-\alpha }(b-u)^{\gamma -\frac{3}{2}}(a-u)^{\delta -\frac{3}{2}}\,\mathrm{d}u\), then
-
(i)
$$\begin{aligned} I=(b-a)^{\gamma +\delta -2}\int \limits _{\frac{b}{a}}^{\infty }(x-1)^{\alpha -\delta -\gamma } x^{\gamma -\frac{3}{2}}(ax-b)^{1-\alpha }\,\mathrm{d}x. \end{aligned}$$
-
(ii)
If additionally \(\alpha =\gamma +\delta \), then
$$\begin{aligned} I\!=\!(b\!-\!a)^{\alpha -2}\int \limits _{\frac{b}{a}}^{\infty }x^{\gamma -\frac{3}{2}} (ax\!-\!b)^{1-\alpha }\,\mathrm{d}x\!=\!(b\!-\!a)^{\alpha -2}b^{\frac{1}{2}-\delta } a^{\frac{1}{2}-\gamma }\beta (\delta \!-\!1/2,2\!-\!\alpha ). \end{aligned}$$ -
(iii)
If \(\alpha ,\gamma \in (-1,1)\) arbitrary, \(0<a<b\) and \(J=\int _a^by^{-\alpha }\int _0^az^{\alpha }(y-z)^{-\gamma }\,\mathrm{d}z\,\mathrm{d}y,\) then
$$\begin{aligned} J&= \frac{a^{2-\gamma }}{2-\gamma }\int \limits _{\frac{a}{b}}^1v^{\alpha +\gamma -2} (1-v)^{-\gamma }\,\mathrm{d}v\\&\quad +\frac{b^{2-\gamma }}{2-\gamma }\int \limits _0^{\frac{a}{b}}v^{\alpha } (1-v)^{-\gamma }\,\mathrm{d}v-\frac{a^{2-\gamma }}{2-\gamma }\beta (\alpha +1,1-\gamma ). \end{aligned}$$
Proof
Part (i) is obtained via substituting \(x=\frac{u-b}{u-a}\). Part (ii) follows by substituting \(y=\frac{b}{ax}.\) For (iii) \(z=yv\) is substituted and it follows that
\(\square \)
Appendix 2
Formulas (i)–(iv) below can be found in The Handbook of mathematical functions, p. 559 by Abramowitz and Stegun [1]. Formula (v) is from the Integrals and Series handbook by Prudnikov at. al. [28].
Lemma 6.2
Let \(a,b,c\) be real numbers and \(z\in \mathbb C \).
-
(i)
For \(|\mathrm{arg}(z)|, |\mathrm{arg}(1-z)|<\pi \) and when all terms are defined,
$$\begin{aligned} \,_2F_1(a,b;c;z)&= \frac{\varGamma (c)\varGamma (c\!-\!a\!-\!b)}{\varGamma (c\!-\!a) \varGamma (c\!-\!b)}z^{-a}\,_2F_1\left( a,a\!-\!c\!+\!1;a\!+\!b\!-\!c\!+\!1;1\!-\!\frac{1}{z}\right) \\&\quad +\frac{\varGamma (c)\varGamma (a\!+\!b\!-\!c)}{\varGamma (a)\varGamma (b)} (1\!-\!z)^{c-a-b}z^{a-c}\,_2F_1\left( c\!-\!a,1\!-\!a;c\!-\!a\!-\!b\!+\!1;1\!-\!\frac{1}{z}\right) . \end{aligned}$$ -
(ii)
If \((1-z)^{-a}\) is defined,
$$\begin{aligned} _2F_1(a,b;c;z)=(1-z)^{-a}\,_2F_1\left( a,c-b;c;\frac{z}{z-1}\right) . \end{aligned}$$ -
(iii)
For \(|\mathrm{arg}(1-z)|<\pi \) and when all terms are defined,
$$\begin{aligned} \,_2F_1(a,b;c;z)&= \frac{\varGamma (c)\varGamma (c-a-b)}{\varGamma (c-a)\varGamma (c-b)}\,_2F_1(a,b;a+b-c+1;1-z)\\&\quad +\frac{\varGamma (c)\varGamma (a\!+\!b\!-\!c)}{\varGamma (a)\varGamma (b)}(1\!-\!z)^{c-a-b}\,_2F_1(c\!-\!a,c\!-\!b;c\!-\!a\!-\!b\!+\!1;1\!-\!z). \end{aligned}$$ -
(iv)
If \((1-z)^{c-a-b}\) is defined,
$$\begin{aligned} _2F_1(a,b;c;z)=(1-z)^{c-a-b}\,_2F_1(c-a,c-b;c;z). \end{aligned}$$ -
(v)
$$\begin{aligned}&\int \limits _a^b(x-a)^{\alpha -1}(b-x)^{\delta -1}(cx+d)^{\gamma }\,\mathrm{d}x\\&\quad =\beta (\alpha ,\delta )(b-a)^{\alpha +\delta -1}(ac+d)^{\gamma } \,_2F_1\left( \alpha ,-\gamma ;\alpha +\delta ;\frac{c(a-b)}{ac+d}\right) \end{aligned}$$
if \(\mathrm{Re}(\alpha )>0,\ \mathrm{Re}(\delta )>0\) and \(|\mathrm{arg}((d+cb)/(d+ca))|<\pi .\)
-
(vi)
Under the assumptions of (ii), (iii), and (iv)
$$\begin{aligned}&\,_2F_1(a,b;c;z)={1\!\!1}_{\{a=0\vee b=0\}}\\&\!\!\!\!\!\!\!\!\quad +{1\!\!1}_{\{a\ne 0\wedge b\ne 0\}}(1\!-\!z)^{-a}\Bigg [\frac{\varGamma (c)\varGamma (b\!-\!a)}{\varGamma (c\!-\!a)\varGamma (b)} \,_2F_1\left( a,c\!-\!b;a\!-\!b\!+\!1;\frac{1}{1\!-\!z}\right) \\&\!\!\!\!\!\!\!\!\quad +\frac{\varGamma (c)\varGamma (a\!-\!b)}{\varGamma (a)\varGamma (c\!-\!b)} \left( \frac{z}{z\!-\!1}\right) ^{1-c}\left( \frac{1}{1\!-\!z}\right) ^{b-a}\,_2 F_1\left( b\!-\!c\!+\!1,1\!-\!a;b\!-\!a\!+\!1;\frac{1}{1\!-\!z}\right) \Bigg ]. \end{aligned}$$
Proof
Part (vi): The equality is obtained by consecutively applying parts (ii) and (iii) of the Lemma to \(\,_2F_1(a,b;c;z)\) and then applying part (iv) to the second term of what was obtained in the first two steps. The indicator functions make up for the case that \(a=0\) or \(b=0\), i.e., when (iii) cannot be applied. \(\square \)
Rights and permissions
About this article
Cite this article
Ryvkina, J. Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties. J Theor Probab 28, 866–891 (2015). https://doi.org/10.1007/s10959-013-0502-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-013-0502-3
Keywords
- Fractional Brownian motion
- Gaussian processes
- Variable Hurst parameter
- Self-similarity
- Sample path regularity
Mathematics Subject Classification (2010)
- 60G15
- 60G17
- 60G22