Skip to main content
Log in

Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A class of Gaussian processes generalizing the usual fractional Brownian motion for Hurst indices in (1/2,1) and multifractal Brownian motion introduced in Ralchenko and Shevchenko (2010 Theory Probab Math Stat 80:119–130) and Boufoussi et al. (Bernoulli 16(4):1294–1311, 2010) is presented. Any measurable function assuming values in this interval can now be chosen as a variable Hurst parameter. These processes allow for modeling of phenomena where the regularity properties can change with time either continuously or through jumps, such as in the volatility of a stock or in Internet traffic. Some properties of the sample paths of the new process class, including different types of continuity and long-range dependence, are discussed. It is found that the regularity properties of the Hurst function chosen directly correspond to the regularity properties of the sample paths of the processes. The long-range dependence property of fractional Brownian motion is preserved in the larger process class. As an application, Fokker–Planck-type equations for a time-changed fractional Brownian motion with variable Hurst parameter are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. Alos, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29(2), 766–801 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Ayache, A., Cohen, S., Véhel, J.: The covariance structure of multifractional Brownian motion, with application to long range dependence. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3810–3813. IEEE (2000)

  5. Benassi, A., Roux, D., Jaffard, S.: Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13(1), 19–88 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  7. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic calculus for fractional Brownian motion and applications. Springer, Berlin (2007)

    Google Scholar 

  8. Boufoussi, B., Dozzi, M., Marty, R.: Local time and Tanaka formula for a Volterra-type multifractional Gaussian process. Bernoulli 16(4), 1294–1311 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cambanis, S., Rajput, B.: Some zero-one laws for Gaussian processes. Ann. Probab. 1(2), 304–312 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chronopoulou, A., Viens, F.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8(2), 379–403 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8(4), 291–323 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Conway, J.B.: A course in functional analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  13. Decreusefond, L.: Stochastic integration with respect to Volterra processes. Ann. de l’Inst. Henri Poincare (B) Probab. Stat. 41(2), 123–149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dekking, F., Lévy Véhel, J., Lutton, E., Tricot, C., et al.: Fractals: theory and applications in engineering. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  15. Doob, J.: Stochastic processes. Wiley, New York (1962)

    Google Scholar 

  16. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. arXiv preprint arXiv:0805.3823 (2008)

  17. Hahn, M., Kobayashi, K., Ryvkina, J., Umarov, S.: On time-changed Gaussian processes and their associated Fokker–Planck–Kolmogorov equations. Electron. Commun. Probab. 16, 150–164 (2010)

    Google Scholar 

  18. Janczura, J., Wyłomańska, A.: Subdynamics of financial data from fractional Fokker–Planck equation. Munich personal RePEc archive (2009)

  19. Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  20. Jennane, R., Ohley, W., Majumdar, S., Lemineur, G.: Fractal analysis of bone X-ray tomographic microscopy projections. Trans. Med. Imaging 20(5), 443–449 (2001)

    Article  Google Scholar 

  21. Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. CR (Dokl.) Acad. Sci. URSS 26, 115–118 (1940)

  22. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin (2011)

    Google Scholar 

  23. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Google Scholar 

  24. Meerschaert, M., Scheffler, H.: Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peltier, R.F., Véhel, J.L.: Multifractional Brownian motion: definition and preliminary results. Inria research report no. 2645 (1995)

  27. Perrin, E., Harba, R., Iribarren, I., Jennane, R.: Piecewise fractional Brownian motion. IEEE Trans. Signal Process. 53(3), 1211–1215 (2005)

    Article  MathSciNet  Google Scholar 

  28. Prudnikov, A., Brychkov, Y., Marichev, O.: Integrals and Series. Gordon and Breach, London (1986)

    Google Scholar 

  29. Ralchenko, K., Shevchenko, G.: Path properties of multifractal Brownian motion. Theory Probab. Math. Stat. 80, 119–130 (2010)

    Article  MathSciNet  Google Scholar 

  30. Ryvkina, J.: Fractional Brownian motion with variable Hurst parameter. Ph.D. thesis, Tufts University (2013)

  31. Véhel, J., Riedi, R.: Fractional Brownian motion and data traffic modeling: the other end of the spectrum. Fractals Eng. 97, 185–202 (1997)

    Article  Google Scholar 

  32. Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. Marjorie Hahn for her help and advice, Dr. Kei Kobayashi for productive comments as well as Dr. Anna Pósfei for fruitful discussions. The author is also indebted to an anonymous referee for calling my attention to papers [29] and [8] as well as suggestions which increased the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Ryvkina.

Appendices

Appendix 1

Lemma 6.1

Let \(\alpha <2, \gamma >1/2,\delta >1/2\) and \(I=\int _0^{a}u^{1-\alpha }(b-u)^{\gamma -\frac{3}{2}}(a-u)^{\delta -\frac{3}{2}}\,\mathrm{d}u\), then

  1. (i)
    $$\begin{aligned} I=(b-a)^{\gamma +\delta -2}\int \limits _{\frac{b}{a}}^{\infty }(x-1)^{\alpha -\delta -\gamma } x^{\gamma -\frac{3}{2}}(ax-b)^{1-\alpha }\,\mathrm{d}x. \end{aligned}$$
  2. (ii)

    If additionally \(\alpha =\gamma +\delta \), then

    $$\begin{aligned} I\!=\!(b\!-\!a)^{\alpha -2}\int \limits _{\frac{b}{a}}^{\infty }x^{\gamma -\frac{3}{2}} (ax\!-\!b)^{1-\alpha }\,\mathrm{d}x\!=\!(b\!-\!a)^{\alpha -2}b^{\frac{1}{2}-\delta } a^{\frac{1}{2}-\gamma }\beta (\delta \!-\!1/2,2\!-\!\alpha ). \end{aligned}$$
  3. (iii)

    If \(\alpha ,\gamma \in (-1,1)\) arbitrary, \(0<a<b\) and \(J=\int _a^by^{-\alpha }\int _0^az^{\alpha }(y-z)^{-\gamma }\,\mathrm{d}z\,\mathrm{d}y,\) then

    $$\begin{aligned} J&= \frac{a^{2-\gamma }}{2-\gamma }\int \limits _{\frac{a}{b}}^1v^{\alpha +\gamma -2} (1-v)^{-\gamma }\,\mathrm{d}v\\&\quad +\frac{b^{2-\gamma }}{2-\gamma }\int \limits _0^{\frac{a}{b}}v^{\alpha } (1-v)^{-\gamma }\,\mathrm{d}v-\frac{a^{2-\gamma }}{2-\gamma }\beta (\alpha +1,1-\gamma ). \end{aligned}$$

Proof

Part (i) is obtained via substituting \(x=\frac{u-b}{u-a}\). Part (ii) follows by substituting \(y=\frac{b}{ax}.\) For (iii) \(z=yv\) is substituted and it follows that

$$\begin{aligned} J&= \int \limits _a^by^{1-\gamma }\int \limits _0^{\frac{a}{y}}v^{\alpha }(1-v)^{-\gamma }\,\mathrm{d}v\,\mathrm{d}y\\&= \int \limits _{\frac{a}{b}}^1v^{\alpha }(1-v)^{-\gamma }\int \limits _a^{\frac{a}{v}}y^{1-\gamma }\,\mathrm{d}y\, \mathrm{d}v+\int \limits _0^{\frac{a}{b}}v^{\alpha }(1-v)^{-\gamma }\int \limits _a^{b}y^{1-\gamma }\,\mathrm{d}y\,\mathrm{d}v\\&= \frac{a^{2-\gamma }}{2-\gamma }\int \limits _{\frac{a}{b}}^1v^{\alpha +\gamma -2}(1-v)^{-\gamma }\,\mathrm{d}v+\frac{b^{2-\gamma }}{2-\gamma } \int \limits _0^{\frac{a}{b}}v^{\alpha }(1-v)^{-\gamma }\,\mathrm{d}v\\&\quad -\frac{a^{2-\gamma }}{2-\gamma }\beta (\alpha +1,1-\gamma ). \end{aligned}$$

\(\square \)

Appendix 2

Formulas (i)–(iv) below can be found in The Handbook of mathematical functions, p. 559 by Abramowitz and Stegun [1]. Formula (v) is from the Integrals and Series handbook by Prudnikov at. al. [28].

Lemma 6.2

Let \(a,b,c\) be real numbers and \(z\in \mathbb C \).

  1. (i)

    For \(|\mathrm{arg}(z)|, |\mathrm{arg}(1-z)|<\pi \) and when all terms are defined,

    $$\begin{aligned} \,_2F_1(a,b;c;z)&= \frac{\varGamma (c)\varGamma (c\!-\!a\!-\!b)}{\varGamma (c\!-\!a) \varGamma (c\!-\!b)}z^{-a}\,_2F_1\left( a,a\!-\!c\!+\!1;a\!+\!b\!-\!c\!+\!1;1\!-\!\frac{1}{z}\right) \\&\quad +\frac{\varGamma (c)\varGamma (a\!+\!b\!-\!c)}{\varGamma (a)\varGamma (b)} (1\!-\!z)^{c-a-b}z^{a-c}\,_2F_1\left( c\!-\!a,1\!-\!a;c\!-\!a\!-\!b\!+\!1;1\!-\!\frac{1}{z}\right) . \end{aligned}$$
  2. (ii)

    If \((1-z)^{-a}\) is defined,

    $$\begin{aligned} _2F_1(a,b;c;z)=(1-z)^{-a}\,_2F_1\left( a,c-b;c;\frac{z}{z-1}\right) . \end{aligned}$$
  3. (iii)

    For \(|\mathrm{arg}(1-z)|<\pi \) and when all terms are defined,

    $$\begin{aligned} \,_2F_1(a,b;c;z)&= \frac{\varGamma (c)\varGamma (c-a-b)}{\varGamma (c-a)\varGamma (c-b)}\,_2F_1(a,b;a+b-c+1;1-z)\\&\quad +\frac{\varGamma (c)\varGamma (a\!+\!b\!-\!c)}{\varGamma (a)\varGamma (b)}(1\!-\!z)^{c-a-b}\,_2F_1(c\!-\!a,c\!-\!b;c\!-\!a\!-\!b\!+\!1;1\!-\!z). \end{aligned}$$
  4. (iv)

    If \((1-z)^{c-a-b}\) is defined,

    $$\begin{aligned} _2F_1(a,b;c;z)=(1-z)^{c-a-b}\,_2F_1(c-a,c-b;c;z). \end{aligned}$$
  5. (v)
    $$\begin{aligned}&\int \limits _a^b(x-a)^{\alpha -1}(b-x)^{\delta -1}(cx+d)^{\gamma }\,\mathrm{d}x\\&\quad =\beta (\alpha ,\delta )(b-a)^{\alpha +\delta -1}(ac+d)^{\gamma } \,_2F_1\left( \alpha ,-\gamma ;\alpha +\delta ;\frac{c(a-b)}{ac+d}\right) \end{aligned}$$

    if \(\mathrm{Re}(\alpha )>0,\ \mathrm{Re}(\delta )>0\) and \(|\mathrm{arg}((d+cb)/(d+ca))|<\pi .\)

  6. (vi)

    Under the assumptions of (ii), (iii), and (iv)

    $$\begin{aligned}&\,_2F_1(a,b;c;z)={1\!\!1}_{\{a=0\vee b=0\}}\\&\!\!\!\!\!\!\!\!\quad +{1\!\!1}_{\{a\ne 0\wedge b\ne 0\}}(1\!-\!z)^{-a}\Bigg [\frac{\varGamma (c)\varGamma (b\!-\!a)}{\varGamma (c\!-\!a)\varGamma (b)} \,_2F_1\left( a,c\!-\!b;a\!-\!b\!+\!1;\frac{1}{1\!-\!z}\right) \\&\!\!\!\!\!\!\!\!\quad +\frac{\varGamma (c)\varGamma (a\!-\!b)}{\varGamma (a)\varGamma (c\!-\!b)} \left( \frac{z}{z\!-\!1}\right) ^{1-c}\left( \frac{1}{1\!-\!z}\right) ^{b-a}\,_2 F_1\left( b\!-\!c\!+\!1,1\!-\!a;b\!-\!a\!+\!1;\frac{1}{1\!-\!z}\right) \Bigg ]. \end{aligned}$$

Proof

Part (vi): The equality is obtained by consecutively applying parts (ii) and (iii) of the Lemma to \(\,_2F_1(a,b;c;z)\) and then applying part (iv) to the second term of what was obtained in the first two steps. The indicator functions make up for the case that \(a=0\) or \(b=0\), i.e., when (iii) cannot be applied. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryvkina, J. Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties. J Theor Probab 28, 866–891 (2015). https://doi.org/10.1007/s10959-013-0502-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0502-3

Keywords

Mathematics Subject Classification (2010)

Navigation