Skip to main content
Log in

The Brownian Plane

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We introduce and study the random non-compact metric space called the Brownian plane, which is obtained as the scaling limit of the uniform infinite planar quadrangulation. Alternatively, the Brownian plane is identified as the Gromov–Hausdorff tangent cone in distribution of the Brownian map at its root vertex, and it also arises as the scaling limit of uniformly distributed (finite) planar quadrangulations with \(n\) faces when the scaling factor tends to \(0\) less fast than \(n^{-1/4}\). We discuss various properties of the Brownian plane. In particular, we prove that the Brownian plane is homeomorphic to the plane, and we get detailed information about geodesic rays to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aldous, D.: The continuum random tree I. Ann. Probab. 19, 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldous, D.: The continuum random tree III. Ann. Probab. 21, 248–289 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 3, 935–974 (2003)

    Article  MathSciNet  Google Scholar 

  4. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241, 191–213 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  6. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Boston (2001)

    Google Scholar 

  7. Chassaing, P., Durhuus, B.: Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34, 879–917 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chassaing, P., Schaeffer, G.: Random planar lattices and integrated superBrownian excursion. Probab. Theory Relat. Fields 128, 161–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Curien, N., Ménard, L., Miermont, G.: A view from infinity of the uniform infinite quadrangulation. Alea (to appear). arXiv:1201.1052

  10. Duquesne, T., Winkel, M.: Growth of Lévy trees. Probab. Theory Relat. Fields 139, 313–371 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Stat. 22, 425–487 (1986)

    MATH  MathSciNet  Google Scholar 

  12. Krikun, M.: Local structure of random quadrangulations. Preprint, math:PR/0512304

  13. Le Gall, J.F.: The topological structure of scaling limits of large planar maps. Invent. Math. 169, 621–670 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Le Gall, J.F.: Geodesics in large planar maps and in the Brownian map. Acta Math. 205, 287–360 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Le Gall, J.F.: Uniqueness and universality of the Brownian map. Ann. Probab. (to appear). arXiv:1105.4842

  16. Le Gall, J.F., Miermont, G.: Scaling limits of random trees and planar maps. In: Probability and Statistical Physics in Two and More Dimensions, Clay mathematics proceedings, vol. 15. CMI–AMS (2012)

  17. Le Gall, J.F., Paulin, F.: Scaling limits of bipartite planar maps are homeomorphic to the \(2\)-sphere. Geom. Funct. Anal. 18, 893–918 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lyons, R., Peres, Y., Pemantle, R.: Conceptual proofs of \(L\log L\) criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marckert, J.F., Mokkadem, A.: Limit of normalized quadrangulations: the Brownian map. Ann. Probab. 34, 2144–2202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ménard, L.: The two uniform infinite quadrangulations of the plane have the same law. Ann. Inst. H. Poincaré Probab. Stat. 46, 190–208 (2010)

    Article  MATH  Google Scholar 

  21. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. (to appear). arXiv:1104.1606

  22. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We are indebted to Grégory Miermont for a number of very useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Le Gall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curien, N., Le Gall, JF. The Brownian Plane. J Theor Probab 27, 1249–1291 (2014). https://doi.org/10.1007/s10959-013-0485-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0485-0

Keywords

Mathematics Subject Classification (2010)

Navigation