Skip to main content
Log in

Hitting Time Distributions for Denumerable Birth and Death Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For an ergodic continuous-time birth and death process on the nonnegative integers, a well-known theorem states that the hitting time T 0,n starting from state 0 to state n has the same distribution as the sum of n independent exponential random variables. Firstly, we generalize this theorem to an absorbing birth and death process (say, with state −1 absorbing) to derive the distribution of T 0,n . We then give explicit formulas for Laplace transforms of hitting times between any two states for an ergodic or absorbing birth and death process. Secondly, these results are all extended to birth and death processes on the nonnegative integers with ∞ an exit, entrance, or regular boundary. Finally, we apply these formulas to fastest strong stationary times for strongly ergodic birth and death processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.J., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs (2003). www.berkeley.edu/users/aldous/book.html

  2. Anderson, W.: Continuous-Time Markov Chains. Springer, New York (1991)

    Book  MATH  Google Scholar 

  3. Brown, M., Shao, Y.S.: Identifying coefficients in the spectral representation for first passage time distributions. Probab. Eng. Inf. Sci. 1, 69–74 (1987)

    Article  MATH  Google Scholar 

  4. Chen, M.F.: From Markov Chains to Non-Equilibrium Particle Systems, 2nd edn. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  5. Chen, M.-F.: Speed of stability for birth-death processes. Front. Math. China 5(3), 379–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diaconis, P., Miclo, L.: On times to quasi-stationarity for birth and death processes. J. Theor. Probab. 22, 558–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaconis, P., Saloff-Coste, L.: Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16, 2098–2122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feller, W.: The birth and death processes as diffusion processes. J. Math. Pures Appl. 38, 301–345 (1959)

    MathSciNet  MATH  Google Scholar 

  9. Fill, J.A.: Strong stationary duality for continuous-time Markov chains. Part I: Theory. J. Theor. Probab. 5, 45–70 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fill, J.A.: The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof. J. Theor. Probab. 22, 543–557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fill, J.A.: On hitting times and fastest strong stationary times for skip-free and more general chains. J. Theor. Probab. 22, 587–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis, vol. II. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  13. Hou, Z.-T., Chen, M.-F.: On the symmetrizability of a class of Q-processes. J. Beijing Norm. Univ. 3–4, 1–12 (1980) (in Chinese)

    MathSciNet  Google Scholar 

  14. Karlin, S., McGregor, J.: Coincidence properties of birth and death processes. Pac. J. Math. 9, 1109–1140 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  16. Keilson, J.: Markov Chain Models—Rarity and Exponentiality. Applied Mathematical Sciences, vol. 28. Springer, New York (1979)

    Book  MATH  Google Scholar 

  17. Kent, J.T.: The spectral decomposition of a diffusion hitting time. Ann. Probab. 10, 207–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mao, Y.-H.: Eigentime identity for continuous-time ergodic Markov chains. J. Appl. Probab. 41, 1071–1080 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mao, Y.-H.: Eigentime identity for transient Markov chains. J. Math. Anal. Appl. 315, 415–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Micchelli, C.A., Willoughby, R.A.: On functions which preserve the class of Stieltjes matrices. Linear Algebra Appl. 23, 141–156 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miclo, L.: On absorbtion times and Dirichlet eigenvalues. ESAIM Probab. Stat. 14, 117–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. Elsevier, Amsterdam (2003)

    Google Scholar 

  23. Wang, Z.K., Yang, X.Q.: Birth and Death Processes and Markov Processes. Science Press/Springer, Beijing/Berlin (1992)

    MATH  Google Scholar 

  24. Yang, X.-Q.: The Construction Theory of Denumerable Markov Processes. Wiley, New York (1990)

    MATH  Google Scholar 

  25. Zhang, H.J., Lin, X., Hou, Z.T.: Polynomial uniform convergence for standard transition functions. Chin. Ann. Math., Ser. A 21, 351–355 (2000) (in Chinese)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Professors Mu-Fa Chen and Feng-Yu Wang for their valuable suggestions. The authors thank especially Professor James Allen Fill and an anonymous referee for their careful reading and instructional comments on the first two manuscripts.

Research supported in part by 985 Project, 973 Project (No 2011CB808000), NSFC (No 11131003), SRFDP (No 20100003110005) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hua Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Mao, YH. & Zhang, C. Hitting Time Distributions for Denumerable Birth and Death Processes. J Theor Probab 25, 950–980 (2012). https://doi.org/10.1007/s10959-012-0436-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0436-1

Keywords

Mathematics Subject Classification (2010)

Navigation